
8. Basic Function/Function Block Library

8-1

8. Function/Function Block Library
8.1 Basic Function Library

This chapter describes the basic function library respectively.

 When a function error occurs, please refer to the following instruction.
▷ Function error

If an error occurs when a function is run, ENO will be 0 and, the error flag (_ERR, _LER) will be 1.
 Unless an error occurs, ENO will be equal to EN (EN and ENO are used in LD only).

▷ Error flag
 _ERR (Error)

- After function execution of which error is described, _ERR value will be changed as follows:
(There’s no change in _ERR value as long as there’s no function error.)

 - In case of an operation error, it will be 1.
 - In other cases, it will be 0.

 _LER (Latched Error)
- In case of an error after execution, _LER will be 1 and maintained until the end of the program.
- It is possible to write 0 in the program.

Program Example
 This is a program that moves VALUE1 data to OUT_VAL without executing SUB function if an ADD

function error occurs.

 (1) An error occurs in ADD function when its two inputs are as follows:
 Input (IN1): VALUE1 (SINT) = 100 (16#64)
 (IN2): VALUE2 (SINT) = 50 (16#32)
 Output (OUT): OUT_VAL (SINT) = -106 (16#96)
 (2) As an output value is out of range of its data type, the abnormal value will be stored in the OUT_VAL

(SINT). At this time, ENO of ADD function will be 0 and SUB function will not be executed, and the
error flag (_ERR and _LER) will be on.

 (3) _ERR will be on and MOVE function will be executed.
 Input (IN1): VALUE1 (SINT) = 100 (16#64)
 Output (OUT): OUT_VAL (SINT) = 100 (16#64)

POINT

8. Basic Function/Function Block Library

8-2

ABS
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 ABS
 BOOL EN ENO BOOL
 ANY_NUM IN OUT ANY_NUM

 Input EN: executes the function in case of 1
 IN: input value of absolute value operation

 Output ENO: without an error, it will be 1
 OUT: absolute value

 IN, OUT should be the same data type.

Function

It converts input IN into its absolute value and produces output OUT.
|X|, an absolute value of X is,
 If X>=0, |X| = X,
 If X<0, |X| = -X.
OUT = IN

Error
 _ERR, _LER flags are set when input IN is a minimum value.
 Ex) If IN value is –128 and its data type is SINT, an error occurs.

Program Example

LD IL

 LD %I0.0.0
 JMPN AL
 LD VALUE
 ABS
 ST ABS_VALUE
 AL :

(1) If the transition condition (%I0.0.0) is on, ABS function will be executed.
(2) If VALUE = -7, ABS_VALUE = -7 = 7.
 If VALUE = 200, ABS_VALUE = 200 = 200.

 Input (IN): VALUE (INT) = -7
 (16#FFF9)

 Output (OUT): ABS_VALUE (INT) = 7
 (16#0007)
The negative number of INT type is represented as the 2's compliment form (refer to 3.2.4. Data Type
Structure)

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

(ABS)

Absolute value operation

8. Basic Function/Function Block Library

8-3

ACOS
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 ACOS
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: input value of Arc Cosine operation

 Output ENO: without an error, it will be 1
 OUT: Arc Cosine (radian)
 IN, OUT should be the same data type.

 Function

It converts input IN into its Arc Cosine value and produces output OUT. The output range is between 0 and π.
OUT = ACOS (IN).

 Error
Unless an IN value is between -1.0 and 1.0, _ERR, _LER flags are set.

 Program Example
LD IL

 LD %M0
 JMPN LL
 LD INPUT
 ACOS
 ST RESULT
 LL :

(1) If the transition condition (%M0) is on, ACOS function will be executed.
(2) If INPUT is 0.8660... (√ 3 / 2), RESULT will be 0.5235... (π/6 rad = 30°).
 ACOS (√3 / 2) = π/6
 (COS π/6 = √ 3 / 2)

 Input (IN1): INPUT (REAL) = 0.866

(ACOS)

 Output (OUT): RESULT (REAL) = 5.23499966E-01

REAL type representation is based on IEEE Standard 754-1984 (refer to 3.2.4. Data Type Structure).

Arc Cosine operation

8. Basic Function/Function Block Library

8-4

ADD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 ADD
 BOOL EN ENO BOOL
ANY_NUM IN1 OUT ANY_NUM
ANY_NUM IN2

 Input EN: executes the function in case of 1
 IN1: value to be added
 IN2: value to add
 Input variable number can be extended up to 8

 Output ENO: without an error, it will be 1
 OUT: added value

 IN1, IN2, ..., OUT should be the same data type.

 Function

It adds input variables up (IN1, IN2, ..., and INn, n: input number) and produces output OUT.
OUT = IN1 + IN2 + ... + INn

 Error
 When the output value is out of its data type, _ERR, _LER flags are set.

 Program Example
LD IL

 LD %M0
 JMPN CA
 LD VALUE1
 ADD IN1:= CURRENT RESULT
 IN2:= VALUE2
 IN3:= VALUE3
 ST OUT_VAL
 CA :

(1) If the transition condition (%M0) is on, ADD function will be executed.
(2) If input variable VALUE1 = 300, VALUE2 = 200, and VALUE3 = 100,

 output variable OUT_VAL = 300 + 200 + 100 = 600.

 Input (IN1): VALUE1 (INT) = 300 (16#012C)
 + (ADD)
 (IN2): VALUE2 (INT) = 200 (16#00C8)
 + (ADD)
 (IN2): VALUE3 (INT) = 100 (16#0064)

 (OUT): OUT_VAL (INT) = 600 (16#0258)

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0

Addition

8. Basic Function/Function Block Library

8-5

ADD_TIME
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 ADD_TIME
 BOOL EN ENO BOOL
TIME/TOD/DT IN1 OUT TIME/TOD/DT
 TIME IN2

 Input EN: executes the function in case of 1
 IN1: reference time, time of date
 IN2: time to add
 Output ENO: without an error, it will be 1
 OUT: added result of TOD or time
 IN1, IN2, and OUT should be the same data type:

If IN1 type is TIME_OF_DAY, OUT type will be also
TIME_OF_DAY.

 Function
▷ If IN1 is TIME, added TIME will be an output.
▷ If IN1 is TIME_OF_DAY, it adds TIME to reference TIME_OF_DAY and produces output TIME_OF_DAY.
▷ If IN1 is DATE_AND_TIME, the output data type will be DT (Date and Time of Day) adding the time to the

standard date and time of day.

 Error
▷ If an output value is out of range of related data type, _ERR, _LER flag will be set.
▷ An error occurs: 1) when the result of adding the time and the time is out of range of TIME data type

T#49D17H2M47S295MS; 2) the result of adding TOD (Time of Day) and the time exceeds 24hrs; 3) the
result of adding the date and DT (Date and the Time of Day) exceeds the year, 2083.

 Program Example

LD IL

 LD %I0.1.0
 JMPN ABC
 LD START_TIME
 ADD_TIME IN1:= CURRENT RESULT
 IN2:= WORK_TIME
 ST END_TIME
 ABC :

(1) If the transition condition (%I0.1.0) is on, ADD_TIME function will be executed.
(2) If START_TIME is TOD#08:30:00 and WORK_TIME is T#2H10M20S500MS,

END_TIME will be TOD#10:40:20.5.

 Input (IN1): START_TIME (TOD) = TOD#08:30:00
 + (ADD_TIME)

 (IN2): WORK_TIME (TIME) = T#2H10M20S500MS

 Output (OUT): END_TIME (TOD) = TOD#10:40:20.5

Time Addition

8. Basic Function/Function Block Library

8-6

AND
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 AND
 BOOL EN ENO BOOL
 ANY_BIT IN1 OUT ANY_BIT
 ANY_BIT IN2

 Input EN: executes the function in case of 1
 IN1: input 1
 IN2: input 2
 Input variables can be extended up to 8.

 Output ENO: without an error, it will be 1
 OUT: AND result
 IN1, IN2, and OUT should be all the same data type.

 Function
It performs logical AND operation on the input variables by bit and produces output OUT.
 IN1 1111 0000
 &
 IN2 1010 1010
 OUT 1010 0000

 Program Example

LD IL

 LD %I0.1.1
 JMPN AA
 LD %MB10
 AND IN1:= CURRENT RESULT
 IN2:= ABC
 ST %QB0.0.0
 AA :

(1) If the transition condition (%I0.1.1) is on, AND function will be executed.
(2) If INI = %MB10 and IN2 = ABC, the result of AND will be shown in OUT (%QB0.0.0).

 Input (IN1): %MB10 (BYTE) = 16#CC
 & (AND)
 (IN2): ABC (BYTE) = 16#F0

 Output (OUT): %QB0.0.0 (BYTE) = 16#C0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 1 0 0 0 0 0 0

Logical AND (Logical multiplication)

 8. Basic Function/Function Block Library

8-7

ARY_TO_STRING
 MODEL GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

Input EN: executes the function in case of 1
 IN: byte array input

 Output ENO: without an error, it will be 1
 OUT: string output

 Function
It converts a byte array input into a string.

 Program Example

LD

(1) If the transition condition (%M2) is on, BYTE_STRING function will be executed.
(2) Input variable INPUT is converted into string-type variable OUTPUT.

For example, if INPUT is 16#{22(“), 47(G), 4D(M), 34(4), 2D(-), 43(C), 50(P), 55(U), 41(A), 22(“)}, the
RESULT will be “GM4-CPUA”.

STRING

ARY_ARY_ARY_ARY_TO_STRINGTO_STRINGTO_STRINGTO_STRING

ENO EN
IN1 OUT

BOOL BOOL

BYTE_ARY

Converts a byte array into a string

8. Basic Function/Function Block Library

8-8

ASIN
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 ASIN
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: input value of Arc Sine operation

 Output ENO: without an error, it will be 1
 OUT: radian output value after operation
 IN and OUT should be the same data type.

 Function

It produces an output (Arc Sine value) of IN. The output value is between -π/2 and π/2.
OUT = ASIN (IN)

 Error
If an input value exceeds the range from -1.0 to 1.0, _ERR and _LER flags are set.

 Program Example
LD IL

 LD %M0
 JMPN AAA
 LD INPUT
 ASIN
 ST RESULT
 AAA :

(1) If the transition condition (%M0) is on, ASIN function will be executed.
(2) If INPUT variable is 0.8660.... (√ 3 /2), the RESULT will be 1.0471.... (π/3 radian = 60°).

ASIN (√ 3 / 2) = π/3
 Therefore, SIN (π/3) = √ 3 /2

 Input (IN1): INPUT (REAL) = 0.866
 (ASIN)

 Output (OUT): RESULT (REAL) = 1.04714680E+00

Arc Sine operation

8. Basic Function/Function Block Library

8-9

ATAN
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 ATAN
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: Input value of Arc Tangent operation

 Output ENO: without an error, it will be 1
 OUT: radian output value after operation

 IN, OUT should be the same data type.

■ Function
It produces an output (Arc Tangent value) of IN value. The output value is between -π/2 and π/2.
OUT = ATAN (IN)

■ Program Example

LD IL

 LD %M0
 JMPN AA
 LD INPUT
 ATAN
 ST RESULT
 AA :

(1) If the transition condition (%M0) is on, ATAN function will be executed.
(2) If INPUT = 1.0, then output RESULT will be:
 RESULT = π/4 = 0.7853...
 ATAN (1) = π/4
 (TAN (π/4) = 1)

 Input (IN1): INPUT (REAL) = 1.0

(ATAN)

 Output (OUT): RESULT (REAL) = 7.85398185E-01

Arc Tangent operation

8. Basic Function/Function Block Library

8-10

BCD_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 BCD_TO_***

 BOOL EN ENO BOOL
 ANY_BIT IN OUT ***

 Input EN: executes the function in case of 1
 IN: ANY_BIT (BCD)

 Output ENO: without an error, it will be 1
 OUT: type-converted data

 Function

It converts input IN type and produces output OUT.

Function Input type Output type Description

 BCD_TO_SINT BYTE SINT
 BCD_TO_INT WORD INT
 BCD_TO_DINT DWORD DINT
 BCD_TO_LINT LWORD LINT
 BCD_TO_USINT BYTE USINT
 BCD_TO_UINT WORD UINT
 BCD_TO_UDINT DWORD UDINT
 BCD_TO_ULINT LWORD ULINT

It converts BCD data into an output data type.
It coverts only when the input date type is a BCD value.
If an input data type is WORD, only the part of its data

(0 ∼16#9999) will be normally converted.

 Error

If IN is not a BCD data type, then the output will be 0 and _ERR, _LER flags will be set.

 Program Example
LD IL

 LD %M0
 JMPN ABC
 LD BCD_VAL
 BCD_TO_SINT
 ST OUT_VAL
 ABC :

(1) If the transition condition (%M0) is on, BCD_TO_*** function will be executed.
(2) If BCD_VAL (BYTE) = 16#22 (2#0010_ 0010),

then the output variable OUT_VAL (SINT) = 22 (2#0001_ 0110).

 Input (IN1): BCD_VAL (BYTE) = 16#22
 (BCD_TO_SINT)
 Output (OUT): OUT_VAL (SINT) = 22

0 0 1 0 0 0 1 0

0 0 0 1 0 1 1 0

Converts BCD data into an integer number

8. Basic Function/Function Block Library

8-11

BOOL_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 BOOL_TO_***
 BOOL EN ENO BOOL
 BOOL IN OUT ***

 Input EN: executes the function in case of 1
 IN: bit to convert (1 bit)

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function
It converts input IN type and produces output OUT.

Function
Output

type
Description

 BOOL_TO_SINT SINT
 BOOL_TO_INT INT
 BOOL_TO_DINT DINT
 BOOL_TO_LINT LINT
 BOOL_TO_USINT USINT
 BOOL_TO_UINT UINT
 BOOL_TO_UDINT UDINT
 BOOL_TO_ULINT ULINT

If the input value (BOOL) is 2#0, it produces the integer number ‘0’ and
if it is 2#1, it does the integer number ‘1’ according to the output data
type.

 BOOL_TO_BYTE BYTE
 BOOL_TO_WORD WORD
 BOOL_TO_DWORD DWORD
 BOOL_TO_LWORD LWORD

 It converts BOOL into the output data type of which upper bits are filled
with 0.

 BOOL_TO_STRING STRING It converts BOOL into a STRING type, which will be ‘0’ or ‘1’.

 Program Example

LD IL

 LD %M0
 JMPN ABC
 LD BOOL_VAL
 BOOL_TO_BYTE
 ST OUT_VAL
 ABC :

(1) If the transition condition (%M0) is on, BOOL_TO_*** function will be executed.
(2) If input BOOL_VAL (BOOL) = 2#1, then output OUT_VAL (BYTE) = 2#0000_ 0001.
 Input (IN1): BOOL_VAL (BOOL) = 2#1

(BOOL_TO_SINT)
 Output (OUT): OUT_VAL (BYTE) = 16#1 0 0 0 0 0 0 0 1

1

BOOL type conversion

8. Basic Function/Function Block Library

8-12

BYTE_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 BYTE_TO_***
 BOOL EN ENO BOOL
 BYTE IN OUT ***

 Input EN: executes the function in case of 1
 IN: bit string to convert (8 bits)

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function

It converts input IN type and produces output OUT.

Function Output type Description
 BYTE _TO_SINT SINT Converts into SINT type without changing its internal bit array.
 BYTE _TO_INT INT Converts into INT type filling the upper bits with 0.
 BYTE _TO_DINT DINT Converts into DINT type filling the upper bits with 0.
 BYTE _TO_LINT LINT Converts into LINT type filling the upper bits with 0.
 BYTE _TO_USINT USINT Converts into USINT type without changing its internal bit array.
 BYTE _TO_UINT UINT Converts into UINT type filling the upper bits with 0.
 BYTE _TO_UDNT UDINT Converts into UDINT type filling the upper bits with 0.
 BYTE _TO_ULINT ULINT Converts into ULINT type filling the upper bits with 0.
 BYTE _TO_BOOL BOOL Takes the lower 1 bit and converts it into BOOL type.
 BYTE _TO_WORD WORD Converts into WORD type filling the upper bits with 0.
 BYTE _TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.
 BYTE _TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.
 BYTE _TO_STRING STRING Converts the input value into STRING type.

 Program Example

LD IL

 LD %M10
 JMPN LLL
 LD IN_VAL
 BYTE_TO_SINT
 ST OUT_VAL
 LLL :

(1) If the transition condition (%M10) is on, BYTE_TO_SINT function will be executed.
(2) If IN_VAL (BYTE) = 2#0001_1000, OUT_VAL (SINT) = 24 (2#0001_1000).

 Input (IN1): IN_VAL (BYTE) = 16#18
 (BYTE_TO_SINT)
 Output (OUT): OUT_VAL (SINT) = 24

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

BYTE type conversion

8. Basic Function/Function Block Library

8-13

CONCAT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 CONCAT

 BOOL EN ENO BOOL
 STRING IN1 OUT STRING
 STRING IN2

 Input EN: executes the function in case of 1
 IN1: input character string
 IN2: input character string
 Input variable number can be extended up to 8.

Output ENO: without an error, it will be 1.

 OUT: output character string

 Function

It concatenates the input character string IN1, IN2, IN3, …, INn (n: input number) in order and produces
output character string OUT.

 Error
If the sum of character number of each input character string is greater than 30, then the output CONCAT is
the concatenate string of each input character string (up to 30 letters), and _ERR, _LER flags will be set.

 Program Example
LD IL

 LD %0.2.1
 JMPN THERE
 LD IN_TEXT1
 CONCAT IN1:= CURRENT RESULT
 IN2:= IN_TEXT2
 ST OUT_TEXT
 THERE :

(1) If the transition condition (%I0.2.1) is on, CONCAT function will be executed.
(2) If input variable IN_TEXT1 = ‘ABCD’ and IN_TEXT2 = ‘DEF’, then OUT_TEXT = ‘ABCDDEF’.

 Input (IN1): IN_TEXT1 (STRING) = ‘ABCD’
 (IN2): IN_TEXT2 (STRING) = ‘DEF’

(CONCAT)
 Output (OUT): OUT_TEXT (STRING) = ‘ABCDDEF’

Concatenates a character string

8. Basic Function/Function Block Library

8-14

CONCAT_TIME
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 CONCAT_TIME

 BOOL EN ENO BOOL
 DATE IN1 OUT DT
 TOD IN2

 Input EN: executes the function in case of 1
 IN1: date data input
 IN2: Time of day data input

 Output ENO: without an error, it will be 1.
 OUT: DT (Date and Time of Day) output

 Function
It concatenates IN1 (date) and IN2 (time of day) and produces output OUT (DT).

 Program Example
LD IL

 LD %M1
 JMPN AA
 LD START_DATE
 CONCAT_TIME IN1:= CURRENT RESULT
 IN2:= START_TIME
 ST START_DT
 AA :

(1) If the transition condition (%M1) is on, CONCAT_TIME function will be executed.
(2) If START_DATE = D#1995-12-06 and START_TIME = TOD#08:30:00,

then, output START_DT = DT#1995-12-06-08:30:00.

 Input (IN1): START_DATE1 (DATE) = D#1995-12-06
 (CONCAT_TIME)
 (IN2): START_TIME (TOD) = TOD#08:30:00

 Output (OUT): START_DT (DT) = DT#1995-12-06-08:30:00

Concatenates date and time of day

 8. Basic Function/Function Block Library

8-15

COS
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 COS
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: radian input value of Cosine operation

 Output ENO: without an error, it will be 1.
 OUT: result value of Cosine operation

 IN and OUT should be the same data type.

 Function

It produces IN’s Cosine operation value.
OUT = COS (IN)

 Program Example
LD IL

 LD %I0.1.3

 JMPN CCC

 LD INPUT

 COS

 ST RESULT

 CCC :

(1) If the transition condition (%I0.1.3) is on, COS function will be executed.
(2) If input INPUT = 0.5235 (π/6 rad = 30°), output RESULT = 0.8660 ... (√ 3 /2).
 COS (π/6) = √ 3/2 = 0.866

 Input (IN1): INPUT (REAL) = 0.5235
 (COS)
 Output (OUT): RESULT (REAL) = 8.66074800E-01

Cosine operation

8. Basic Function/Function Block Library

8-16

DATE_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DATE_TO_***
BOOL EN ENO BOOL
DATE IN OUT ***

 Input EN: executes the function in case of 1
 IN: date data to convert

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function

It converts an input IN type and produces output OUT.

Function Output type Description
DATE_TO_UINT UINT Converts DATE into UINT type.

DATE_TO_WORD WORD Converts DATE into WORD type.

DATE_TO_STRING STRING Converts DATE into STRING type.

 Program Example

LD IL

 LD %M0

 JMPN LL

 LD IN_VAL

 DATE_TO_STRING

 ST OUT_VAL

 LL :

(1) If the transition condition (%M0) is on, DATE_TO_STRING function will be executed.
(2) If IN_VAL (DATE) = D#1995-12-01, OUT_VAL (STRING) = D#1995-12-01.

 Input (IN1): IN_VAL (DATE) = D#1995-12-01
 (DATE_TO_STRING)

 Output (OUT): OUT_VAL (STRING) = ‘D#1995-12-01’

Date type conversion

8. Basic Function/Function Block Library

8-17

DELETE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DELETE
 BOOL EN ENO BOOL
 STRING IN OUT STRING
 INT L
 INT P

 Input EN: executes the function in case of 1
 IN: input character string
 L: length of character string to delete
 P: position of character string to delete

 Output ENO: without an error, it will be 1.
 OUT: output character string

Function
After deleting a character string (L) from the P character of IN, produces output OUT.

 Error
 If P≤ 0 or L< 0, or
 If P > character number of IN, _ERR and _LER flags will be set.

 Program Example
LD IL

 LD %I0.0.0
 JMPN KKK
 LD IN_TEXT
 DELETE IN:= CURRENT RESULT
 L:= LENGTH
 P:= POSITION
 ST OUT_TEXT
 KKK :

(1) If the transition condition (%I0.0.0) is ON, DELETE function will be executed.
(2) If input variable IN_TEXT = ‘ABCDEF’, LENGTH = 3, and POSITION = 3, then OUT_TEXT (STRING) will

be ‘ABF’.
 Input (IN): IN_TEXT (STRING) = ‘ABCDEF’
 (L): LENGTH (INT) = 3
 (P): POSITION (INT) = 3
 (DELETE)
 Output (OUT): OUT_VAL (STRING) = ‘ABF’

Deletes a character string

8. Basic Function/Function Block Library

8-18

DI
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DI
 BOOL EN ENO BOOL
 BOOL REQ OUT BOOL

 Input EN: executes the function in case of 1
 REQ: requires to invalidate task program starting

Output ENO: without an error, it will be 1.
 OUT: If DI is executed, it will be 1.

 Function

 ▷ If EN = 1 and REQ = 1, it stops a task program (single, interval, interrupt).

 ▷ Once DI function is executed, a task program does not start even if REQ input is 0.

 ▷ In order to start a task program normally, please use ‘EI’ function.

 ▷ If you want to partially stop the task program for the troubled part, (otherwise, miss the continuity of

operation process due to the execution of other task program), it is available to use this function.

 ▷ The task programs created while its execution is not invalidated will be executed according to task

program types as follows:

- Single task: it will be executed after 'EI' function or current-running task program execution. In his

case, it repeats a task program as many as the state of single variable changes.

- Interval task, interrupt: Interval task, interrupt: the task occurred when it is not permitted to execute

will be executed after 'EI' function or the current-running task program execution. But, if it occurs

more than 2 times, TASK_ERR is ON and TC_CNT (the number of task collision) is counted.

Invalidates task program (Not to permit task program
starting)

8. Basic Function/Function Block Library

8-19

 Program Example
This is the program that controls the task program increasing the value per second by using DI (Invalidates
task program) and EI (permits running for task program).

LD IL
(1) Scan program (TASK program control)

(2) Task program increasing by executing per second.

(1) Scan program (TASK program control)

 LDN %M100

 JMPN KK

 LD %I0.1.14

 DI

 ST DI_OK

 KK :

 LDN %M100

 JMPN LL

 LD %I0.1.15

 EI

 ST EI_OK

 LL :

(2) Task program increasing by executing per

second
 LDN %M1

 JMPN MM

 LD %IW0.0.0

 MOVE

 ST %MW100

 MM :

(1) If REQ (assigned as direct variable %I0.1.14) of DI is on, DI function will be executed and output DI_OK will

be 1.

(2) If DI function is executed, the task program to be executed per second stops.

(3) If REQ (assigned as direct variable %I0.1.15) of EI is on, EI function will be executed and output EI_OK will

be 1.

(4) If EI function is executed, the task program stopped due to function DI will restart.

8. Basic Function/Function Block Library

8-20

DINT_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DINT_TO_***
 BOOL EN ENO BOOL
 DINT IN OUT ***

 Input EN: executes the function in case of 1
 IN: double integer value to convert

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

■ Function
It converts Input IN type and produces output OUT.

Function Output type Description
 DINT_TO_SINT SINT If input is -128 ∼ 127, normal conversion.

Except this, an error occurs.

 DINT_TO_INT INT
If input is -32768 ∼ 32767, normal conversion.
Except this, an error occurs.

 DINT_TO_LINT LINT Converts normally into LINT type.

 DINT_TO_USINT USINT
If input is 0 ∼ 255, normal conversion.
Except this, an error occurs.

 DINT_TO_UINT UINT
If input is 0 ∼ 65535, normal conversion.
Except this, an error occurs.

 DINT_TO_UDINT UDINT
If input is 0 ∼ 2147483647, normal conversion.
Except this, an error occurs.

 DINT_TO_ULINT ULINT
If input is 0 ∼ 2147483647, normal conversion.
Except this, an error occurs.

 DINT_TO_BOOL BOOL Takes the low 1 bit and converts into BOOL type.
 DINT_TO_BYTE BYTE Takes the low 8 bit and converts into BYTE type.
 DINT_TO_WORD WORD Takes the low 18 bit and converts into WORD type.
 DINT_TO_DWORD DWORD Converts into DWORD type without changing the internal bit array.
 DINT_TO_LWORD LWORD Converts into LWORD type filling the upper bytes with 0.

 DINT_TO_BCD DWORD
If input is 0 ∼ 99,999,999, normal conversion.
Except this, an error occurs.

 DINT_TO_REAL REAL
Converts DINT into REAL type.
During conversion, an error caused by the precision may occur.

 DINT_TO_LREAL LREAL
Converts DINT into LREAL type.
During conversion, an error caused by the precision may occur.

 Error
If a conversion error occurs, _ERR, _LER flags will be set.

When an error occurs, it takes as many lower bits as the bit number of the output type and produces an
output without changing the internal bit array.

Invalidates task program (Not to permit task program
starting)

8. Basic Function/Function Block Library

8-21

 Program Example

LD IL

 LD %M1
 JMPN LSB
 LD DINT_VAL
 DINT_TO_SINT
 ST SINT_VAL
 LSB :

(1) If the transition condition (%M1) is on, DINT_TO_SINT function will be executed.
(2) If INI = DINT_VAL (DINT) = -77, SINT_VAL (SINT) = -77.

 Input (IN1): DINT_VAL (DINT) = -77 upper

lower

 (DINT_TO_SINT)

 Output (OUT): OUT_VAL (SINT) = -77

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1

8. Basic Function/Function Block Library

8-22

DIREC_IN
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DIREC_IN
 BOOL EN ENO BOOL
 USINT BASE OUT BOOL
 USINT SLOT
 DWORD MASK_L
 DWORD MASK_H

 Input EN: executes the function in case of 1
 BASE: base number of an input module installed
 SLOT: slot number of an input module installed
 MASK_L: designates bits not to be updated

among lower 32-bit data of input
 MASK_H: designates bits not to be updated

among upper 32-bit data of input

 Output ENO: without an error, it will be 1.
 OUT: if update is completed, output will be 1.

 Function
 ▷ If EN is 1 during the scan, DIREC_IN function reads 64-bit data of an input module from the designated

position of BASE and SLOT and updates them.

 ▷ At this time, only the actual contacts of an input module will be updated in the image scope.

 ▷ DIREC_IN function is available to use when you want to change the ON/OFF state of input (%I) during

the scan.

 ▷ Generally, it's impossible to update input data during 1 scan (executing a scan program) because a

scan-synchronized batch processing mode executes the batch processing to read input data and

produce output data after a scan program. It's available to update related input data, if you use

DIREC_IN function during program execution.

Update input data

8. Basic Function/Function Block Library

8-23

 Program Example
1. This is the program that updates a 16-contact module installed in the 4th slot (slot number is 3) of the 3rd

extension base of which input data are 2# 1010_1010_1110_1011.
LD IL

 LD %M0

 JMPN ABC

 LD 3

 DIREC_IN BASE:= CURRENT RESULT

 SLOT:= 3

 MASK_L:= 16#FFFF0000

 MASK_H:= 16#FFFF0000

 ST REF_OK

 ABC :

(1) If the input condition (%M0) is on, function DIREC_IN will be executed.
(2) The image scope to update will be %IW3.3.0 and %IW3.3.0 will be updated with

2#1010_1010_1110_1011 during the scan because a 16-contact module is installed and the lower 16-bit
data update is allowed (MASK_L = 16#FFFF0000).

(3) It doesn't matter what data are set in MASK_H because a 16-contact module is installed.

2. This is the program that updates the lower 16-bit data of the 32-contact module installed in the 4th slot

(slot number is 3) of the 3rd extension base of which input data are
2#0000_0000_1111_1111_1100_1100_0011_0011.

LD IL

 LD %M0

 JMPN ABC

 LD 3

 DIREC_IN BASE:= CURRENT RESULT

 SLOT:= 3

 MASK_L:= 16#FFFF0000

 MASK_H:= 16#FFFFFFFF

 ST REF_OK

 ABC :

(1) If input condition (%M0) is on, function DIREC_IN will be executed.
(2) The image scope to update will be %ID3.3.0 but only %IW3.3.0 will be updated with

2#1100_1100_0011_0011 during the scan because a 16-contact module is installed and the lower 16-bit
data update is allowed (MASK_L = 16#FFFF0000).

8. Basic Function/Function Block Library

8-24

3. This is the program that updates the lower 48-bit data of the 64-contact module installed in the 4th slot
(slot number is 3) of the 3rd extension base of which input data are 16#0000_FFFF_AAAA_7777
(2#0000_0000_0000_0000_1111_1111_1111_1111_1010 _1010_1010_1010_0111_0111_0111_0111).

LD IL

 LD %M0

 JMPN ABC

 LD 3

 DIREC_IN BASE:= CURRENT RESULT

 SLOT:= 3

 MASK_L:= 16#00000000

 MASK_H:= 16#FFFF0000

 ST REF_OK

 ABC :

(1) If the input condition (%M0) is on, function DIREC_IN will be executed.
(2) The installed module is a 64-contact module and the image scope to update will be %IL3.3.0 (%ID3.3.0

and ID3.3.1).
 %ID3.3.0 will be updated because the lower 32-bit data update is allowed (MASK_L = 16#00000000).
 %IW3.3.2 of %ID3.3.1 will be updated because only the lower 16-bit data update (among upper 32 bits) is

allowed (MASK_H = 16#FFFF0000).
 Accordingly, the data update of the image scope is as follows:
 %IL3.3.0 %ID3.3.0 %IW.3.3.0: 2#0111_0111_0111_0111
 %IW.3.3.1: 2#1010_1010_1010_1010
 %ID3.3.1 %IW3.3.2: 2#1111_1111_1111_1111
 %IW3.3.3: maintains the previous value
(3) If the input update is completed, output REF_OK will be 1.

 8. Basic Function/Function Block Library

8-25

DIREC_O
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DIREC_O
 BOOL EN ENO BOOL
 USINT BASE OUT BOOL
 USINT SLOT
 DWORD MASK_L
 DWORD MASK_H

 Input EN: executes the function in case of 1
 BASE: base number of an input module installed
 SLOT: slot number of an input module installed
 MASK_L: designates bits not to be updated

among lower 32-bit data of output
 MASK_H: designates a bit not to update

among upper 32-bit data of output
 Output ENO: without an error, it will be 1.
 OUT: If update is completed, output will be 1.

 Function
▷ If EN is 1 during the scan, DIREC_O function reads 64-bit data of an output module from the designated

position of BASE and SLOT and updates the unmasked (MASK (0)) data.

 ▷ DIREC_O is available to use when you want to change the ON/OFF state of output (%Q) during the scan.

▷ Generally, it's impossible to update input data during 1 scan (executing a scan program) because a scan-

synchronized batch processing mode executes the batch processing to read input data and produce output

data after a scan program.

▷ It's available to update related output data, if you use DIREC_O function during program execution.

▷ If the base/slot number is wrong or it is not available to write data normally in an output module, ENO and

OUT are '1' (without an error, it will be 1).

 Program Example

1. This is the program that produces output data 2#0111_0111_0111_0111 in a 16-contact relay output
module installed in the 5th slot (slot number is 4) of the 2nd extension base.

LD IL

 LD %I0.0.0

 JMPN AAA

 LD 2

 DIREC_O BASE: = CURRENT RESULT

 SLOT: = 4

 MASK_L: = 16#FFFF0000

 MASK_H: = 16#FFFFFFFF

 ST REF_OK

 AAA :

(1) Input the slot and base number in which an output module installed.

Update output data

8. Basic Function/Function Block Library

8-26

(2) Set MASK_L as 16#FFFF0000 because the output data to produce are the lower 16 bits among the
output contacts.

(3) If the transition condition (%I0.0.0) is on, DIREC_O will be executed and the data of the output module
will be updated as 2#0111_0111_0111_0111 during the scan.

2. This is the program that updates the lower 24 bits of the 32-contact transistor output module, installed in

the 5th slot (slot number is 4) of the 2nd extension base, with 2#1111_0000_1111_0000_1111_0000
during the scan.

LD IL

 LD %I0.0.0

 JMPN AAA

 LD 2

 DIREC_O BASE:= CURRENT RESULT

 SLOT:= 4

 MASK_L:= 16#FF000000

 MASK_H:= 16#FFFFFFFF

 ST REF_OK

 AAA:

(1) Input the slot and base number in which an output module installed.
(2) Set MASK_L as 16#FF000000 because the output data to produce are the lower 24 bits among the

output contacts.
(3) If the transition condition (%I0.0.0) is off, function DIREC_O will be executed and the data of the output

module will be updated as 2#□□□□_□□□□_1111_0000_1111_0000_1111_0000 during the scan.

 Maintains the previous value.

8. Basic Function/Function Block Library

8-27

DIV
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DIV
 BOOL EN ENO BOOL
 ANY_NUM IN1 OUT ANY_NUM
 ANY_NUM IN2

 Input EN: executes the function in case of 1
 IN1: the value to be divided (dividend)
 IN2: the value to divide (divisor)

 Output ENO: without an error, it will be 1.
 OUT: the divided result (quotient)

The variable connected to IN1, IN2 and OUT should be all the
same data type.

 Function
It divides IN1by IN2 and produces an output omitting decimal fraction from the quotient.
OUT = IN1/IN2

IN1 IN2 OUT Remarks
 7
 7
-7
-7

 2
-2
 2
-2

3
-3
-3
3

Decimal fraction omitted.

7 0 × Error

 Error
If the value to divide (divisor) is ‘0’, _ERR, _LER flags will be set.

 Program Example
LD IL

 LD %I0.0.0
 JMPN LL
 LD VALUE1
 DIV IN1:= CURRENT RESULT
 IN2:= VALUE2
 ST OUT_VAL
 LL :

(1) If the transition condition (%I0.0.0) is on, DIV function will be executed.
(2) If input VALUE1 = 300 and VALUE2 = 100, then output OUT_VAL = 300/100 = 3.

 Input (IN1): VALUE1 (INT) = 300 (16#012C)
 / (DIV)
 (IN2): VALUE2 (INT) = 100 (16#0064)

 Output (OUT): OUT_VAL (INT) = 3 (16#3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

Division

8. Basic Function/Function Block Library

8-28

DIV_TIME
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DIV_TIME
 BOOL EN ENO BOOL
 TIME IN1 OUT TIME
 ANY_NUM IN2

 Input EN: executes the function in case of 1
 IN1: Time to divide
 IN2: The value to divide

 Output ENO: without an error, it will be 1.
 OUT: divided result time

 Function

It divides IN1 (time) by IN2 (number) and produces output OUT (divided time).

 Error
If a divisor (IN2) is 0, _ERR and _LER flags will be set.

 Program Example
This is the program that calculates the time required to produce one product in some product line if the
working time of day is 12hr 24min 24sec and product quantity of a day is 12 in a product line.

LD IL

 LD %I0.1.0
 JMPN SS
 LD TOTAL_TIME
 DIV_TIME IN1:= CURRENT RESULT
 IN2:= PRODUCT_COUNT
 ST TIME_PER_PRO
 SS :

(1) If the transition condition (%I0.1.0) is on, DIV_TIME function will be executed.
(2) If it divides TOTAL_TIME (T#12H24M24S) by PRODUCT_COUNT (12), the time required to produce one
product TIME_PER_PRO (T#1H2M2S) will be an output. That is, it takes 1hr 2min 2sec to produce one
product.

 Input (IN1): TOTAL_TIME (TIME) = T#12H24M24S
 / (DIV_TIME)
 (IN2): PRODUCT_COUNT (INT) = 12

 Output (OUT): TIME_PER_PRO (TIME) = T#1H2M2S

Time division

8. Basic Function/Function Block Library

8-29

DT_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DT_TO_***
 BOOL EN ENO BOOL
 DT IN OUT ***

 Input EN: executes the function in case of 1
 IN: date and time of day data to convert

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function

It converts Input IN type and produces output OUT.

Function Output type Description
 DT_TO_LWORD LWORD Converts DT into LWORD type.

(The inverse conversion is available as there is no internal data change).
 DT_TO_DATE DATE Converts DT into DATE type.
 DT_TO_TOD TOD Converts DT into TOD type.
 DT_TO_STRING STRING Converts DT into STRING type.

 Program Example
LD IL

 LD %M20
 JMPN L
 LD IN_VAL
 DT_TO_DATE
 ST OUT_VAL
 L :

(1) If the transition condition (%M20) is on, DT_TO_DATE function will be executed.
(2) If input IN_VAL (DT) = DT#1995-12-01-12:00:00, output OUT_VAL (DATE) = D#1995-12-01.

 Input (IN1): IN_VAL (DT) = DT#1995-12-01-12:00:00
 (DT_TO_DATE)
 Output (OUT): OUT_VAL (DATE) = D#1995-12-01

DT type conversion

8. Basic Function/Function Block Library

8-30

DWORD_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 DWORD_TO_***
 BOOL EN ENO BOOL
DWORD IN OUT ***

 Input EN: executes the function in case of 1
 IN: bit string to convert (32bit)

 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function

It converts Input IN type and produces output OUT.

Function Output type Description
 DWORD _TO_SINT SINT Takes the lower 8 bits and converts into SINT type.
 DWORD _TO_INT INT Takes the lower 16 bits and converts into INT type.
 DWORD _TO_DINT DINT Converts into DINT type without changing the internal bit array.
 DWORD _TO_LINT LINT Converts into LINT type filling the upper bits with 0
 DWORD _TO_USINT USINT Takes the lower 8 bits and converts into USINT type.
 DWORD _TO_UINT UINT Takes the lower 16 bits and converts into UINT type.
 DWORD _TO_UDINT UDINT Converts into UDINT type without changing the internal bit array.
 DWORD _TO_ULINT ULINT Converts into ULINT type filling the upper bits with 0.
 DWORD _TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
 DWORD _TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.
 DWORD _TO_WORD WORD Takes the lower 16 bits and converts into WORD type.
 DWORD _TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.
 DWORD _TO_REAL REAL Converts into REAL type without changing the internal bit array.
 DWORD _TO_TIME TIME Converts into TIME type without changing the internal bit array.
 DWORD _TO_TOD TOD Converts into TOD type without changing the internal bit array.
 DWORD _TO_STRING STRING Changes input value into decimal and converts into STRING type.

DWORD type conversion

8. Basic Function/Function Block Library

8-31

 Program Example

LD IL

 LD %M0
 JMPN AA
 LD IN_VAL
 DWORD_TO_WORD
 ST OUT_VAL
 AA :

(1) If the transition condition (%M0) is on, DWIRD_TO_TOD function will be executed.
(2) If output IN_VAL (DWORD) = 16#3E8 (1000), output OUT_VAL (TOD) = TOD#1S.

Input (IN1): IN_VAL (DWORD) = 16#3E8(1000) High
 Low
 Converts a data type only

without changing a data
(internal bit array state)

Output (OUT): OUT_VAL(TOD) = TOD#1S High
 Low

 Calculates TIME, TOD by converting decimal into MS unit. That is, 1000 is 1000ms = 1s.

Refer to 3.2.4. Data Type Structure.

0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8. Basic Function/Function Block Library

8-32

EI
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 EI
 BOOL EN ENO BOOL
 BOOL REQ OUT BOOL

 Input EN: executes the function in case of 1
 REQ: requires to permit running for task program

 Output ENO: without an error, it will be 1.
 OUT: If EI is executed, an output will be 1.

 Function
▷ If EN is 1 and REQ input is 1, task program blocked by 'DI' function starts normally.
▷ Once 'EI' command is executed, task program starts normally even if REQ input is 0.
▷ Task programs created when they are not permitted to operate will be executed after 'EI' function or the

current-running task program execution.

 Program Example (refer to DI)
LD IL

 LD %I0.0.0

 JMPN LSB

 LD EN_TASK

 EI

 ST EN_OK

 LSB :

If EN_TASK is 1, a task program starts normally.
If EI function permits running for a task program, output EN_OK will be 1.

.

Permits running for task program

8. Basic Function/Function Block Library

8-33

EQ
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 EQ
 BOOL EN ENO BOOL
 ANY IN1 OUT BOOL
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: the value to be compared
 IN2: The value to compare
 Input variable number can be extended up to 8.
 IN1, IN2, ... should be the same type.

 Output ENO: without an error, it will be 1.
 OUT: comparison result value

 Function
If IN1 = IN2 = IN3 ... = INn (n : input number), output OUT will be 1.
In other cases, OUT will be 0.

 Program Example
LD IL

 LD %I0.1.0
 JMPN AA
 LD VALUE1
 EQ IN1:= CURRENT RESULT
 IN2:= VALUE2
 IN3:= VALUE3
 ST %Q0.0.1
 AA :

(1) If the transition condition (%I0.1.0) is on, EQ function will be executed.
(2) If VALUE1 = 300, VALUE2 = 300, VALUE3 = 300 (comparison result VALUE1 = VALUE2 = VALUE3),
output %Q0.0.1 = 1.

 Input (IN1): VALUE1 (INT) = 300 (16#012C)
 = (EQ)
 (IN2): VALUE2 (INT) = 300 (16#012C)
 = (EQ)
 (IN3): VALUE1 (INT) = 300 (16#012C)

 Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

1

‘Equal to’ comparison

8. Basic Function/Function Block Library

8-34

ESTOP
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 ESTOP
 BOOL EN ENO BOOL
 BOOL REQ OUT BOOL

 Input EN: executes the function in case of 1
 REQ: requires the emergency running stop

 Output ENO: without an error, it will be 1.
 OUT: If ESTOP is executed, an output will be 1.

 Function
▷ If transition condition EN is 1 and the signal to require the emergency running stop by program REQ is 1,

program operation stops immediately and returns to STOP mode.
▷ In case that a program stops by 'ESTOP' function, it does not start despite of power re-supply.
▷ If operation mode moves from STOP to RUN, it restarts.
▷ If 'ESTOP' function is executed, the running program stops during operation; if it is not a cold restart

mode, an error may occur when restarts.

 Program Example
LD IL

 LD %I0.2.0
 JMPN SSS
 LD ACCIDENT
 ESTOP
 (ST DUMMY)
 SSS :

(1) If the transition condition (%I0.2.0) is on, ESTOP function will be executed.
(2) If ACCIDENT = 1, the running program stops immediately and returns to STOP mode.
 In case of emergency, it is available to use it as a double safety device with mechanical interrupt.

Emergency running stop by program

8. Basic Function/Function Block Library

8-35

EXP
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 EXP
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

Input EN: executes the function in case of 1
 IN: input value of exponent operation

 Output ENO: without an error, it will be 1.
 OUT: result value

 IN, OUT should be the same data type.

 Function

It calculates the natural exponent with exponent IN and produces output OUT.
OUT = eIN

 Program Example
LD IL

 LD %M5

 JMPN JJ

 LD INPUT

 EXP

 ST RESULT

 JJ :

(1) If the transition condition (%M5) is on, EXP function will be executed.
(2) If INPUT is 2.0, RESULT will be 7.3890…
 e2.0 = 7.3890.....
Input (IN1): INPUT (REAL) = 2.0 High
 Low
 (16#40000000)
 (EXP)
Output (OUT): RESULT (REAL) = 7.38905621E+00

High
 Low

 (16#40EC7326)

0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Natural exponential operation

8. Basic Function/Function Block Library

8-36

EXPT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 EXPT
 BOOL EN ENO BOOL
ANY_REAL IN1 OUT ANY_REAL
ANY_NUM IN2

 Input EN: executes the function in case of 1
 IN1: real number
 IN2: exponent

 Output ENO: without an error, it will be 1.
 OUT: result value

 IN1 and OUT should be the same data type.

 Function
It calculates IN1 with exponent IN2 and produces output OUT.
OUT = IN1IN2

 Error
If an output is out of range of related data type, _ERR and _LER flags will be set.

 Program Example
LD IL

 LD %I0.1.0
 JMPN LSB
 LD IN_VAL
 EXPT IN1:= CURRENT RESULT
 IN2:= VALUE
 ST OUT_VAL
 LSB :

(1) If the transition condition (%I0.1.0) is on, ‘EXPT’ exponential function will be executed.
(2) If input IN_VAL = 1.5, VALUE = 3, output OUT_VAL = 1.53 = 1.5 ×1.5 ×1.5 = 3.375.

 Input (IN1): IN_VAL (REAL) = 1.5

 (IN2): VALUE (INT) = 3
 (EXPT)
 Output (OUT): OUT_VAL (REAL) = 3.37500000E+00

Exponential operation

8. Basic Function/Function Block Library

8-37

FIND
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 FIND
 BOOL EN ENO BOOL
 STRING IN1 OUT INT
 STRING IN2

 Input EN: executes the function in case of 1
 IN1: input character string
 IN2: character string to find

 Output ENO: without an error, it will be 1.
 OUT: location of character string to be found

 Function
It finds the location of character string IN2 from input character string IN1. If the location is found, it shows a
position of a first character of character string IN2 from character string IN1. Otherwise, output will be 0.

 Program Example
LD IL

 LD %I0.1.1

 JMPM XYZ

 LD IN_TEXT1

 FIND IN1:= CURRENT RESULT

 IN2:= IN_TEXT2

 ST POSITION

 XYZ :

(1) If the transition condition (%I0.1.1) is on, FIND function will be executed.
(2) If input character string IN_TEXT1=‘ABCEF’ and IN_TEXT2=‘BC’, then output variable POSITION = 2.
(3) The first location of IN_TEXT2 (‘BC’) from input character string IN_TEXT1 (‘ABCEF’) is 2nd.

 Input (IN1): IN_TEXT1 (STRING) = ‘ABCEF’
 (FIND)
 (IN2): IN_TEXT2 (STRING) = ‘BC’

 Output (OUT): POSITION (INT) = 2

Finds a character string

8. Basic Function/Function Block Library

8-38

GE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 GE
 BOOL EN ENO BOOL
 ANY IN1 OUT BOOL
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: the value to be compared
 IN2: the value to compare
 Input variable number can be extended up to 8.
 IN1, IN2, ... should be the same data type.

 Output ENO: without an error, it will be 1.
 OUT: comparison result value

 Function
 If IN1 ≥ IN2 ≥ IN3... ≥ INn (n: input number), an output will be 1.
 Otherwise it will be 0.

 Program Example
LD IL

 LD %M77

 JMPN YY

 LD VALUE1

 GE IN1= CURRENT RESULT

 IN2= VALUE2

 IN3= VALUE3

 ST %Q0.0.1

 YY:

(1) If the transition condition (%M77) is on, GE function will be executed.
(2) If input variable VALUE1 = 300, VALUE3 = 200, comparison result will be VALUE1 ≥ VALUE2 ≥ VALUE3.

The output %Q0.01 = 1.

 Input (IN1): VALUE1 (INT) = 300 (16#012C)
 ≥ (GE)
 (IN2): VALUE2 (INT) = 200 (16#00C8)
 ≥ (GE)
 (IN3): VALUE3 (INT) = 100 (16#0064)

 Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

1

‘Greater than or equal to’ comparison

8. Basic Function/Function Block Library

8-39

GT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 GT
 BOOL EN ENO BOOL
 ANY IN1 OUT BOOL
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: the value to be compared
 IN2: the value to compare
 Input variable number can be extended up to 8.
 IN1, IN2, ... should be the same data type.

 Output ENO: without an error, it will be 1.
 OUT: comparison result value

 Function
If IN1 > IN2 > IN3... > INn (n: input number), an output will be 1.
Otherwise it will be 0.

 Program Example
LD IL

 LD %M0

 JMPN AAA

 LD VALUE1

 GT IN1:= CURRENT RESULT

 IN2:= VALUE2

 IN3:= VALUE3

 ST %Q0.0.1

 AAA :

(1) If the transition condition (%M0) is on, GT function will be executed.
(2) If input variable VALUE1 = 300, VALUE2 = 200, and VALUE3 = 100, comparison result will be VALUE1 >

VALUE2 > VALUE3. The output %Q0.0.1 = 1.

 Input (IN1): VALUE1 (INT) = 300 (16#012C)
 > (GT)
 (IN2): VALUE2 (INT) = 200 (16#00C8)
 > (GT)
 (IN3): VALUE3 (INT) = 100 (16#0064)

 Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

1

‘Greater than’ comparison

8. Basic Function/Function Block Library

8-40

INSERT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 INSERT
 BOOL EN ENO BOOL
 STRING IN1 OUT STRING
 STRING IN2
 INT P

 Input EN: executes the function in case of 1
 IN1: character string to be inserted
 IN2: character string to insert
 P: position to insert a character string

 Output ENO: without an error, it will be 1.
 OUT: output character string

 Function
It inserts character string IN2 after the P character of IN1 and produces output OUT.

 Error
If P ≤ 0, ‘character number of variable IN1’ < P, or if the character number of result exceeds 30 (just 30
characters are produced), then _ERR, _LER flags will be set.

 Program Example
LD IL

 LD %M0

 JMPN AA

 LD IN_TEXT1

 INSERT IN1:= CURRENT RESULT

 IN2:= IN_TEXT2
 P:= POSITION

ST OUT_TEXT
AA:

(1) If the transition condition (%M0) is on, INSERT function will be executed.
(2) If input variable IN_TEXT1 = ‘ABCD’, IN_TEXT2 = ‘XY’, and POSITON = 2,

output variable OUT_TEXT = ‘ABXYCD’.

 Input (IN1): IN_TEXT1 (STRING) = ‘ABCD’
 (IN2): IN_TEXT2 (STRING) = ‘XY’
 (P): POSITION (INT) = 2
 (FIND)
 Output (OUT): OUT_TEXT = ‘ABXYCD’

Inserts a character string

8. Basic Function/Function Block Library

8-41

INT_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 INT_TO_***
 BOOL EN ENO BOOL
 INT IN OUT ***

 Input EN: executes the function in case of 1
 IN: integer value to convert
 Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function
It converts input IN type and produces output OUT.

Function Output type Description

 INT_TO_SINT SINT If input is -128 ∼ 127, normal conversion. Except this, an error occurs.

 INT_TO_DINT DINT Converts into DINT type normally.

 INT_TO_LINT LINT Converts into LINT type normally.

 INT_TO_USINT USINT If input is 0 ∼ 255, normal conversion. Except this, an error occurs.

 INT_TO_UINT UINT If input is 0 ∼ 32767, normal conversion. Except this, an error occurs.

 INT_TO_UDINT UDINT If input is 0 ∼ 32767, normal conversion. Except this, an error occurs.

 INT_TO_ULINT ULINT If input is 0 ∼ 32767, normal conversion. Except this, an error occurs.

 INT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

 INT_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.

 INT_TO_WORD WORD Converts into WORD type without changing the internal bit array.

 INT_TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.

 INT_TO_LWORD LWORD Converts into LWORD type filling the high bit with 0.

 INT_TO_BCD WORD If input is 0~9,999, normal conversion. Except this, an error occurs.

 INT_TO_REAL REAL Converts INT into REAL type normally.

 INT_TO_LREAL LREAL Converts INT into LREAL type normally.

 Error
If a conversion error occurs, _ERR _LER flags will be set.
If an error occurs, take as many lower bits as the bit number of the output type and produces an output
without changing the internal bit array.

INT type conversion

8. Basic Function/Function Block Library

8-42

 Program Example

LD IL

 LD %M0
 JMPN AAA
 LD IN_VAL
 INT_TO_WORD
 ST OUT_WORD
 AAA:

(1) If the input condition (%M0) is on, INT_TO_WORD function will be executed.
(2) If input variable IN_VAL (INT) = 512 (16#200), output variable OUT_WORD (WORD) = 16#200.

 Input (IN1): IN_VAL (INT) = 512 (16#200)
 (INT_TO_WORD)
 Output (OUT): OUT_WORD (WORD) = 16#200

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

8. Basic Function/Function Block Library

8-43

LE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 LE
 BOOL EN ENO BOOL
 ANY IN1 OUT BOOL
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: the value to be compared
 IN2: the value to compare
 Input variable number can be extended up to 8.
 IN1, IN2, ...should be the same data type.

 Output ENO: without an error, it will be 1.
 OUT: comparison result value

 Function
If IN1 ≤ IN2 ≤ IN3... ≤ INn (n: input number), output OUT will be 1.
Otherwise it will be 0.

 Program Example
LD IL

 LD %M0

 JMPN BBB
 LD VALUE1
 LE IN1:= CURRENT RESULT
 IN2:= VALUE2
 IN3:= VALUE3
 ST %Q0.0.1
 BBB:

(1) If the transition condition (%M0) is on, LE function will be executed.
(2) If input variable VALUE1 = 150, VALUE2 = 200, and VALUE3 = 250, output %Q0.0.1 = 1

(VALUE1 ≤ VALUE2 ≤ VALUE3).

 Input (IN1): VALUE1 (INT) = 150 (16#0096)
 ≤ (LE)
 (IN2): VALUE2 (INT) = 200 (16#00C8)
 ≤ (LE)
 (IN3): VALUE1 (INT) = 250 (16#0064)

 Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

1

'Less than or equal to' comparison

8. Basic Function/Function Block Library

8-44

LEFT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 LEFT
 BOOL EN ENO BOOL
 STRING IN OUT STRING
 INT L

 Input EN: executes the function in case of 1
 IN: input character string
 L: length of character string

 Output ENO: without an error, it will be 1.
 OUT: output character string

 Function
It takes a left character string (L) of IN and produces output OUT.

 Error
If L < 0, _ERR and _LER flags will be set.

 Program Example
LD IL

 LD %M0

 JMPN FF

 LD IN_TEXT
 LEFT IN:= CURRENT RESULT
 L:= LENGTH
 ST OUT_TEXT
 FF:

(1) If the transition condition (%M0) is on, function LEFT function will be executed.
(2) If input variable IN_TEXT = ‘ABCDEFG’ and LENGTH = 3, output character string OUT_TEXT = ‘ABC’.

 Input (IN1): IN_TEXT (STRING) = ‘ABCDEFG’
 (IN2): LENGTH (INT) = 3
 (LEFT)
 Output (OUT): OUT_TEXT (STRING) = ‘ABC’

Takes the left side of a character string

8. Basic Function/Function Block Library

8-45

LEN
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 LEN
 BOOL EN ENO BOOL
 STRING IN OUT INT

 Input EN: executes the function in case of 1
 IN: input character string

 Output ENO: without an error, it will be 1.
 OUT: the length of a character string

 Function

It produces a length (character number) of the input character string (IN).

 Program Example
LD IL

 LD %M0

 JMPN II

 LD IN_TEXT
 LEN IN:= CURRENT RESULT
 ST LENGTH
 II:

(1) If the transition condition (%M0) is on, LEN function will be executed.
(2) If input variable IN_TEXT = ‘ABCD’, output variable LENGTH = 4.

 Input (IN1): IN_TEXT (STRING) = ‘ABCD’
 (LEN)

 Output (OUT): LENGTH (INT) = 4

Finds a length of a character string

8. Basic Function/Function Block Library

8-46

LIMIT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 LIMIT
 BOOL EN ENO BOOL
 ANY MN OUT ANY
 ANY IN
 ANY MX

 Input EN: executes the function in case of 1
 MN: minimum value
 IN: the value to be limited
 MX: maximum value

 Output ENO: without an error, it will be 1.
 OUT: value in the range

 MN, IN, MX, OUT should be the same data type.

 Function
▷ If input IN value is between MN and MX, the IN will be an output.
 That is, if MN ≤ IN ≤ MX, OUT = IN
▷ If input IN value is less than MN, MN will be an output. That is, if IN < MN, OUT = MN.
▷ If input IN value is greater than MX, MX will be an output. That is, if IN > MX, OUT = MX

 Program Example
LD IL

 LD %M0

 JMPN MM

 LD LIMIT_LOW
 LIMIT MN:= CURRENT RESULT
 IN := IN_VALUE
 MX:= LIMIT_HIGH
 ST OUT_VAL
 MM:

(1) If the transition condition (%M0) is on, LIMIT function will be executed.
(2) Output variable OUT_VAL for lower limit input LIMIT_LOW, upper limit input (LIMIT_HIGH) and limited

value input IN_VALUE will be as follows:
LIMIT_LOW IN_VALUE LIMIT_HIGH OUT_VAL

1000 2000 3000 2000
1000 500 3000 1000
1000 4000 3000 3000

 Input (MN): LIMIT_LOW (INT) = 1000
 (IN): IN_VALUE (INT) = 4000
 (MX): IN_VALUE (INT) = 3000
 (LIMIT)
 Output (OUT): OUT_VAL (INT) = 3000

Limits upper and lower boundary

8. Basic Function/Function Block Library

8-47

LINT_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 LINT_TO_***
 BOOL EN ENO BOOL
 LINT IN OUT ***

 Input EN: executes the function in case of 1

 IN: long integer value to convert

 Output ENO: without an error, it will be 1.
 OUT: type converted data

 Function

It converts input IN type and produces output OUT.

 Function Output type Description
 LINT_TO_SINT SINT If input is -128 ∼ 127, normal conversion. Otherwise an error occurs.

 LINT_TO_INT INT
If input is –32,768∼ 32,767, normal conversion.
Otherwise an error occurs.

 LINT_TO_DINT DINT If input is -231 ∼ 231-1, normal conversion. Otherwise an error occurs.
 LINT_TO_USINT USINT If input is 0∼ 255, normal conversion. Otherwise an error occurs.
 LINT_TO_UINT UINT If input is 0∼ 65,535, normal conversion. Otherwise an error occurs.
 LINT_TO_UDINT UDINT If input is 0 ∼ 232-1, normal conversion. Otherwise an error occurs.
 LINT_TO_ULINT ULINT If input is 0 ∼ 263-1, normal conversion. Otherwise an error occurs.
 LINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
 LINT_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.
 LINT_TO_WORD WORD Takes the lower 16 bits and converts into WORD type.
 LINT_TO_DWORD DWORD Takes the lower 32 bits and converts into DWORD type.
 LINT_TO_LWORD LWORD Converts into LWORD type without changing the internal bit array.

 LINT_TO_BCD LWORD
If input is 0~9,999,999,999,999,999, normal conversion.
Otherwise an error occurs.

 LINT_TO_REAL REAL
Converts LINT into REAL type.
During the conversion, an error caused by the precision may occur.

 LINT_TO_LREAL LREAL
Converts LINT into LREAL type.
During the conversion, an error caused by the precision may occur.

 Error

If a conversion error occurs, _ERR and _LER flags will be set.
If an error occurs, take as many lower bits as the bit number of the output type and produces an output
without changing the Internal bit array.

LINT type conversion

8. Basic Function/Function Block Library

8-48

 Program Example
LD IL

 LD %I0.0.0

 JMPN AAA
 LD IN_VAL
 LINT_TO_DINT
 ST OUT_VAL
 AAA:

(1) If the input condition (%I0.0.0) is on, LINT_TO_DINT function will be executed.
(2) If input variable IN_VAL (LINT) = 123_456_789, output variable OUT_VAL (DINT) = 123_456_789.

 Input (IN1): IN_VAL (LINT) = 123,456,789
 (16#75BCD15)

 (LINT_TO_DINT)
 Output (OUT): OUT_VAL (DINT) = 123,456,789

 (16#75BCD15)

1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1

0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1

1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1

8. Basic Function/Function Block Library

8-49

LN
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 LN
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: input value of natural logarithm operation

 Output ENO: without an error, it will be 1.
 OUT: natural logarithm value

 IN, OUT should be the same data type.

 Function

It finds a natural logarithm value of IN and produces output OUT.
OUT = ln IN

 Error
If an input is 0 or a negative number, _ERR and _LER flags will be set.

 Program Example
LD IL

 LD %M0

 JMPN AE
 LD INPUT
 LN
 ST RESULT
 AE:

(1) If the transition condition (%M0) is on, LN function will be executed.
(2) If input variable INPUT is 2.0, output variable RESULT will be 0.6931
 ln (2.0) = 0.6931...

 Input (IN1): INPUT (REAL) = 2.0
 (LN)
 Output (OUT): RESULT (REAL) = 6.93147182E-01

Natural logarithm operation

8. Basic Function/Function Block Library

8-50

LOG
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 LOG
 BOOL EN ENO BOOL
ANY_REAL IN OUT ANY_REAL

 Input EN: executes the function in case of 1
 IN: input value of common logarithm operation

 Output END: without an error, it will be 1.
 OUT: the value of common logarithm operation

 IN, OUT should be the same data type.

 Function

It finds the value of Base 10 Logarithm of IN and produces output OUT.
OUT = log10 IN = log IN

 Error
If input value IN is 0 or a negative number, _ ERR and _LER flags will be set.

 Program Example
LD IL

 LD %M0

 JMPN BB
 LD INPUT
 LOG
 ST RESULT
 BB:

(1) If the transition condition (%M0) is on, LOG function will be executed.
(2) If input variable INPUT is 2.0, output variable RESULT will be 0.3010 ..…
 log10 (2.0) = 0.3010...

 Input (IN1): INPUT (REAL) = 2.0
 (LOG)
 Output (OUT): RESULT (REAL) = 3.01030010E-01

Base 10 Logarithm operation

8. Basic Function/Function Block Library

8-51

LREAL_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 LREAL_TO_***
 BOOL EN ENO BOOL
 LREAL IN OUT ***

 Input EN: executes the function in case of 1
 IN: LREAL value to convert
 Output ENO: without an error, it will be 1.
 OUT: type converted data

 Function
It converts input IN type and produces output OUT.

 Function Output type Description

 LREAL_TO_SINT SINT
If integer number of input is -128 ∼ 127, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_INT INT
If integer number of input is -32768 ∼ 32767, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_DINT DINT
If integer number of input is -231

∼ 231-1, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_LINT LINT
If integer number of input is -263

∼ 263-1, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_USINT USINT
If integer number of input is 0 ∼ 255, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_UINT UINT
If integer number of input is 0 ∼ 65,535, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_UDINT UDINT
If integer number of input is 0 ∼ 232-1, normal conversion.
Otherwise an error occurs (decimal round off).

 LREAL_TO_ULINT ULINT
If integer number of input is 0 ∼ 264-1, normal conversion.
Otherwise an error occurs (decimal round-off).

 LREAL_TO_LWORD LWORD Converts into LWORD type without changing the internal bit array.

 LREAL_TO_REAL REAL
Converts LREAL into REAL type normally.
During the conversion, an error caused by the precision may occur.

 Error
If an overflow occurs because an input value is greater than the value available for the output type, _ERR
and _LER flags will be set. If an error occurs, an output will be 0.

LREAL type conversion

8. Basic Function/Function Block Library

8-52

 Program Example
LD IL

 LD LREAL_VAL
 LREAL_TO_REAL
 ST REAL_VAL

(1) If the input condition (%M0) is on, LREAL_TO_REAL function will be executed.
(2) If input variable LREAL_VAL (LREAL) = -1.34E-12, output variable REAL_VAL (REAL)= -1.34E-12.

 Input (IN1): LREAL_VAL (LREAL) = -1.34E-12
 (LREAL_TO_REAL)
 Output (OUT): REAL_VAL (REAL) = -1.34E-12

8. Basic Function/Function Block Library

8-53

LT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 LT
 BOOL EN ENO BOOL
 ANY IN1 OUT BOOL
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: the value to be compared
 IN2: the value to compare
 Input variable number can be extended up to 8.
 IN1, IN2, ...should be the same data type.

 Output ENO: without an error, it will be 1.
 OUT: comparison result value

 Function
If IN1 < IN2 < IN3... < INn (n: input number), output value OUT will be 1.
Otherwise output OUT will be 0.

 Program Example
LD IL

 LD %M0
 JMPN AA
 LD VALUE1
 LT IN1:= CURRENT RESULT
 IN2:= VALUE2
 IN3:= VALUE3
 ST %Q0.0.1
 AA:

(1) If the transition condition (%M0) is on, LT function will be executed.
(2) If input variable VALUE1 = 100, VALUE2 = 200, and VALUE3 = 300, output %Q0.0.1 = 1.

 Input (IN1): VALUE1 (INT) = 100 (16#0064)
 < (LT)
 (IN2): VALUE2 (INT) = 200 (16#00C8)
 < (LT)
 (IN3): VALUE3 (INT) = 300 (16#012C)

 Output (OUT): %Q0.0.1 (BOOL) = 1 (16#1)

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

1

‘Less than’ comparison

8. Basic Function/Function Block Library

8-54

LWORD_TO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 LWORD_TO_***
 BOOL EN ENO BOOL
 LWORD IN OUT ***

 Input EN: executes the function in case of 1

IN: bit string to convert (64bit)

Output ENO: without an error, it will be 1.
 OUT: type-converted data

 Function
It converts input IN type and produces output OUT.

Function Output type Description

 LWORD _TO_SINT SINT Takes the lower 8 bits and converts into SINT type.

 LWORD _TO_INT INT Takes the lower 16bits and converts into INT type.

 LWORD _TO_DINT DINT Takes the lower 32bits and converts into DINT type.

 LWORD _TO_LINT LINT Converts into LINT type without changing the internal bit array.

 LWORD _TO_USINT USINT Takes the lower 8 bits and converts into USINT type.

 LWORD _TO_UINT UINT Takes the lower 16 bits and converts into UINT type.

 LWORD _TO_UDINT UDINT Takes the lower 32bits and converts into UDINT type.

 LWORD _TO_ULINT ULINT Converts into ULINT type without changing the internal bit array.

 LWORD _TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

 LWORD _TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.

 LWORD _TO_WORD WORD Takes the lower 16 bits and converts into WORD type.

 LWORD _TO_DWORD DWORD Takes the lower 32 bits and converts into DWORD type.

 LWORD _TO_LREAL LREAL Converts LWORD into LREAL type.

 LWORD _TO_DT DT Converts into DT type without changing the internal bit array.

 LWORD _TO_STRING STRING Converts input value into STRING type.

LWORD type conversion

8. Basic Function/Function Block Library

8-55

 Program Example
LD IL

 LD %M0

 JMPN PPP
 LD IN_VAL
 LWORD_TO_LINT
 ST OUT_VAL
 PPP:

(1) If the input condition (%M0) is on, LWORD_TO_LINT function will be executed.
(2) If input variable IN_VAL (LWORD) = 16#FFFFFFFFFFFFFFFF, output variable OUT_VAL (LINT) will be

-1 (16#FFFFFFFFFFFFFFFF).

 Input (IN1): IN_VAL (LWORD) = 16#FFFFFFFFFFFFFFFF
 (LWORD_TO_LINT)

 Output (OUT): OUT_VAL (LINT) = -1

8. Basic Function/Function Block Library

8-56

MAX
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 MAX
 BOOL EN ENO BOOL
 ANY IN1 OUT ANY
 ANY IN2

 Input EN: executes the function in case of 1
 IN1: the value to be compared
 IN2: the value to compare
 Input variable number can be extended up to 8.

 Output ENO: without an error, it will be 1.
 OUT: maximum value among input

 IN1, IN2,…, OUT should be the same data type.

 Function

It produces the maximum value among input IN1, IN2,..., INn (n: input number).

 Program Example
 LD IL

 LD %M0

 JMPN GG
 LD VALUE1
 MAX IN1:= CURRENT RESULT
 IN2:= VALUE2
 ST OUT_VALUE
 GG:

(1) If the transition condition (%M0) is on, MAX function will be executed.
(2) As the result of comparing input variable (VALUE1 = 100 and VALUE2 = 200), maximum value is 200.

 Output OUT_VAL will be 200.

 Input (IN1): VALUE1 (INT) = 100 (16#0064)
 (MAX)

 (IN2): VALUE2 (INT) = 200 (16#00C8)

Output (OUT): OUT_VAL (INT) = 200 (16#00C8)

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

Maximum value

8. Basic Function/Function Block Library

8-57

MID
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 MID
 BOOL EN ENO BOOL
 STRING IN OUT STRING
 INT L
 INT P

 Input EN: executes the function in case of 1
 IN: input character string
 L: the length of character string to output
 P: starting location of character string to output

 Output ENO: without an error, it will be 1.
 OUT: output character string

 Function
It produces a character string (L) of IN from the P character.

 Error
If (character number of variable IN) < P, P <= 0 or L < 0, then _ERR and _LER flags will be set.

 Program Example
 LD IL

 LD %I0.0.0

 JMPN MM
 LD IN_TEXT
 MID IN:= CURRENT RESULT
 L: = LENGTH
 P: = POSITION
 ST OUT_TEXT
 MM:

(1) If the transition condition (%I0.0.0) is on, MID function will be executed.
(2) If input character string IN_TEXT = ‘ABCDEFG’, the length of character string LENGTH = 3, and starting

location of character starting POSITION = 2, output variable OUT_TEXT = ‘BCD’.

 Input (IN): IN_TEXT1 (STRING) = ‘ABCDEFG’

 (L): LENGTH (INT) = 3
 (P): POSITION (INT) = 2
 (MID)
 Output (OUT): OUT_TEXT = ‘BCD’

Takes the middle part of a character string

