
8. Basic Function/Function Block Library

 8-107

8.2 Application Function Library

This chapter describes application function library (MASTER-K and others).

8. Basic Function/Function Block Library

 8-108

ARY_ASC_TO_BCD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 IN1: ASCII Array input

 Output
 ENO: without an error, it will be 1
 OUT: Dummy output

 In/Out
 IN2: BCD Array output

 Function

It converts a word array input (ASCII data) to a byte array output (BCD data).

 Error

 ▷ If the number of each input array is different, there’s no change in IN2 data, and _ERR and _LER flags are set.
 ▷ If the elements of IN1 array are not between 0 and 9 (hexadecimal), its responding elements of IN2 array are

16#00 (while other elements of IN1 are normally converted), and _ERR and _LER flags are set.

 Program example
LD

(1) If the transition condition (%M0) is on, ARY_ASC_TO_BCD function is executed.
(2) If the input ASC_ARY data is:

ASC_ARY[0] 3031H
ASC_ARY[1] 3839H
ASC_ARY[2] 3334H

8 9

0 1 IN2[0]

IN2[1]

3 4

…

IN2[n]

B0 B3 B4 B7

3 9 3 8

3 4 3 3

3 1 3 0

…

IN1[0]

IN1[1]

IN1[n]

B0 B3 B4 B7 B8 B11 B12 B15

‘1’

BOOL

ARY_ASC_TARY_ASC_TARY_ASC_TARY_ASC_T

O_BCDO_BCDO_BCDO_BCD

ENO EN
IN1
IN2

OUT

BOOL BOOL
WORD_ARY
BYTE_ARY

Converts ASCII array into BCD array

8. Basic Function/Function Block Library

 8-109

In/Out BCD_ARY data is as follows:

BYTE_ARY[0] 01H
BYTE_ARY[1] 89H
BYTE_ARY[2] 34H

8. Basic Function/Function Block Library

 8-110

ARY_ASC_TO_BYTE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 IN1: ASCII Array input

 Output
 ENO: without an error, it will be 1
 OUT: Dummy Output

 In/Out
 IN2: BYTE Array Output

 Function

It converts a word array input (ASCII data) to a byte array output (hexadecimal).

 Error

 ▷ If the number of each input array is different, there’s no change in IN2 data, and _ERR and _LER flags are set.
▷ If the elements of IN1 array are not between 0 and F (hexadecimal), its responding elements of IN2 array are 0

(while other elements of IN1 are normally converted), and _ERR and _LER flags are set.

 Program example
LD

(1) If the transition condition is (%M0) is on, ARY_ASC_TO_BYTE function is executed.
(2) If Input ASC_ARY is as below:

ASC_ARY[0] 3441H
ASC_ARY[1] 3346H
ASC_ARY[2] 3239H

3 F

4 A IN2[0]

IN2[1]

2 9

…

IN2[n]

B0 B3 B4 B7

4 6 3 3

3 9 3 2

4 1 3 4

…

IN1[0]

IN1[1]

IN1[n]

B0 B3 B4 B7 B8 B11 B12 B15

‘A’

BOOL

ARY_ASC_TARY_ASC_TARY_ASC_TARY_ASC_T

O_BYTEO_BYTEO_BYTEO_BYTE

ENO EN
IN1
IN2

OUT

BOOL BOOL
WORD_ARY
BYTE_ARY

Converts ASCII array into BYTE array

8. Basic Function/Function Block Library

 8-111

In/Out BYTE_ARY data is as follows:

BYTE_ARY[0] 4AH
BYTE_ARY[1] 3FH
BYTE_ARY[2] 29H

8. Basic Function/Function Block Library

 8-112

ARY_AVE_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input

EN: executes the function in case of 1
IN: data array for average
INDX: starting point to average in an array
LEN: number of array elements for average

 Output
 ENO: without an error, it will be 1
 OUT: average of an array

 Function

 ▷ ARY_AVE_*** function finds an average for a specified length of an array .
 ▷ Input and output array is the same type.
 ▷ If LEN is a minus value, it finds an average between INDX (Array index) and ‘INDX – |LEN|’.
 ▷ Its output is rounded off.

Function Output type Description
ARY_AVE_SINT SINT Finds an average for SINT value (decimal is rounded off)
ARY_AVE_INT INT Finds an average for INT value (decimal is rounded off)
ARY_AVE_DINT DINT Finds an average for DINT value (decimal is rounded off)
ARY_AVE_LINT LINT Finds an average for LINT value (decimal is rounded off)
ARY_AVE_USINT USINT Finds an average for USINT value (decimal is rounded off)
ARY_AVE_UINT UINT Finds an average for UINT value (decimal is rounded off)
ARY_AVE_UDINT UDINT Finds an average for UDINT value (decimal is rounded off)
ARY_AVE_ULINT ULINT Finds an average for ULINT value (decimal is rounded off)
ARY_AVE_REAL REAL REAL.
ARY_AVE_LREAL LREAL LREAL.

 Error

 ▷ If it is designated beyond the array range, _ERR and _LER flags are set.
 ▷ If an error occurs, the output is 0.

※ An error occurs when:

 INDX < 0 or INDX > max. number of IN
 INDX + LEN > max. number of IN

ANY_NUM

ARY_AVEARY_AVEARY_AVEARY_AVE

ENO EN
IN OUT

BOOL BOOL
ANY_NUM_ARY

INDX
LEN

INT
INT

Finds an average of an array

8. Basic Function/Function Block Library

 8-113

 Program example
LD

(1) If input transition condition (%I1.1.6) is on, ARY_AVE_INT function is executed.
(2) If an array is as the above, it finds an average between INDX 3 and 9.
(3) The output value is rounded off.

1604583.16044
6

1004821004292157765187649563 ==+++++

8. Basic Function/Function Block Library

 8-114

ARY_BCD_TO_ASC
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 IN1: BCD array input

 Output
 ENO: without an error, it will be 1
 OUT: dummy output

 In/Out
 IN2: ASCII array output

 Function

It converts a byte array input (BCD) to a word array (ASCII).

 Error
 ▷ If the number of each input array is different, there's no change in IN2 data, and _ERR and _LER flags are set.
 ▷ If the elements of IN1 array are not between 0 and 9 (hexadecimal), its responding elements of IN2 array are

16#3030 ("00") (while other elements of IN1 are normally converted), and _ERR and _LER flags are set.

 Program example
LD

(1) If the transition condition (%M0) is on, ARY_BCD_TO_ASC function is executed.
(2) If the input BCD_ARY is as below:

BYTE_ARY[0] 01H
BYTE_ARY[1] 89H
BYTE_ARY[2] 45H

8 9

0 1 IN1[0]

IN1[1]

4 5

…

IN1[n]

B0 B3 B4 B7

3 9 3 8

3 5 3 4

3 1 3 0

…

IN2[0]

IN2[1]

IN2[n]

B0 B3 B4 B7 B8 B11 B12 B15

‘1’

BOOL

ARY_BCD_TARY_BCD_TARY_BCD_TARY_BCD_T

O_ASCO_ASCO_ASCO_ASC

ENO EN
IN1
IN2

OUT

BOOL BOOL
BYTE_ARY
WORD_ARY

Converts BCD array into ASCII array

8. Basic Function/Function Block Library

 8-115

The In/out ASC_ARY is as follows:

ASC_ARY[0] 3031H
ASC_ARY[1] 3839H
ASC_ARY[2] 3435H

8. Basic Function/Function Block Library

 8-116

ARY_BYTE_TO_ASC
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 IN1: BYTE array input

 Output
 ENO: without an error, it will be 1
 OUT: Dummy output

 In/Out
 IN2: ASCII Array Output

 Function

It converts a byte array input (HEX) to a word array (ASCII).

 Error
If the number of each input array is different, there's no change in IN2 data, and _ERR and _LER flags are
set.

 Program example
LD

(1) If the transition condition (%M0) is on, ARY_BYTE_TO_ASC function is executed.
(2) If the input BYTE_ARY is as below:

BYTE_ARY[0] 4AH
BYTE_ARY[1] 3FH
BYTE_ARY[2] 29H

2 9

…

IN1[n]

3 F

4 A IN1[0]

IN1[1]

B0 B3 B4 B7

4 6 3 3

3 9 3 2

4 1 3 4

…

IN2[0]

IN2[1]

IN2[n]

B0 B3 B4 B7 B8 B11 B12 B15

‘A’

BOOL

ARY_BYTE_ARY_BYTE_ARY_BYTE_ARY_BYTE_

TO_ASCTO_ASCTO_ASCTO_ASC

ENO EN
IN1
IN2

OUT

BOOL BOOL
BYTE_ARY
WORD_ARY

Converts BYTE array into ASCII array

8. Basic Function/Function Block Library

 8-117

The output ASC_ARY is as follows:

ASC_ARY[0] 3441H
ASC_ARY[1] 3346H
ASC_ARY[2] 3239H

8. Basic Function/Function Block Library

 8-118

ARY_CMP_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 IN1: first array to compare
 IN1_INDX : starting point in 1st array for comparison
 IN2: second array to compare
 IN2_INDX : starting point in 2nd array for comparison
 LEN: number of elements to compare

 Output
 ENO: without an error, it will be 1
 OUT: if two arrays are equal, it will be 1

 Function

 ▷ It compare two arrays whether they have the same value.

 ▷ If LEN is minus, it compare two arrays between IN*_INDX (Array INDX) and “Array INDX – |LEN|”.

Function Input array
type Description

ARY_CMP_BOOL BOOL Compares two BOOL Arrays.
ARY_CMP_BYTE BYTE Compares two BYTE Arrays.
ARY_CMP_WORD WORD Compares two WORD Arrays.
ARY_CMP_DWORD DWORD Compares two DWORD Arrays.
ARY_CMP_LWORD LWORD Compares two LWORD Arrays.
ARY_CMP_SINT SINT Compares two SINT Arrays.
ARY_CMP_INT INT Compares two INT Arrays.
ARY_CMP_DINT DINT Compares two DINT Arrays.
ARY_CMP_LINT LINT Compares two LINT Arrays.
ARY_CMP_USINT USINT Compares two USINT Arrays.
ARY_CMP_UINT UINT Compares two UINT Arrays.
ARY_CMP_UDINT UDINT Compares two UDINT Arrays.
ARY_CMP_ULINT ULINT Compares two ULINT Arrays.
ARY_CMP_REAL REAL Compares two REAL Arrays.
ARY_CMP_LREAL LREAL Compares two LREAL Arrays.
ARY_CMP_TIME TIME Compares two TIME Arrays.
ARY_CMP_DATE DATE Compares two DATE Arrays.
ARY_CMP_TOD TOD Compares two TOD Arrays.
ARY_CMP_DT DT Compares two DT Arrays.

BOOL

ARY_CMPARY_CMPARY_CMPARY_CMP

ENO EN
IN1
IN1_INDX

OUT

BOOL BOOL
ANY_ARY
INT

IN2
IN2_INDX
LEN

INT

INT

ANY_ARY

Array comparison

8. Basic Function/Function Block Library

 8-119

 Error

 ▷ If it is designated beyond the array range, _ERR and _LER flags are set.

※ An error occurs when:
 IN1_INDX < 0 or IN1_INDX > max. number of IN1
 IN2_INDX < 0 or IN2_INDX > max. number of IN2

IN1_INDX + LEN ≥ max. number of IN1
IN2_INDX + LEN ≥ max. number of IN2

 Program example

LD

(1) If the input transition condition (%M0) is on, ARY_CMP_TIME function is executed.
(2) When IN_ARY1 is a time array with 100 elements and IN_ARY2 is a time array with 10 elements, if the

elements from 11th to 20th of IN_ARY1 and the elements of IN_ARY 2 are equal, the output %Q1.3.2 is on.

8. Basic Function/Function Block Library

 8-120

ARY_FLL_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 DATA: the data to fill an array
 INDX: starting point of an array to be filled
 LEN: number of array elements to be filled

 Output
 ENO: without an error, it will be 1
 OUT: without an error, it will be 1

 In/Out
 IN: an array to be filled

 Function

 ▷ It fills an array with the input data.
 ▷ If LEN is minus, it fills an array from INDX to “INDX – |LEN|”.

Function In/Out Array type Description
ARY_FLL_BOOL BOOL Fills a BOOL Array with the input data.
ARY_FLL_BYTE BYTE Fills a BYTE Array with the input data.
ARY_FLL_WORD WORD Fills a WORD Array with the input data.
ARY_FLL_DWORD DWORD Fills a DWORD Array with the input data.
ARY_FLL_LWORD LWORD Fills a LWORD Array with the input data.
ARY_FLL_SINT SINT Fills a SINT Array with the input data.
ARY_FLL_INT INT Fills a INT Array with the input data.
ARY_FLL_DINT DINT Fills a DINT Array with the input data.
, ARY_FLL_LINT LINT Fills a LINT Array with the input data.
ARY_FLL_USINT USINT Fills a USINT Array with the input data.
ARY_FLL_UINT UINT Fills a UINT Array with the input data.
ARY_FLL_UDINT UDINT Fills a UDINT Array with the input data.
ARY_FLL_ULINT ULINT Fills a ULINT Array with the input data.
ARY_FLL_REAL REAL Fills a REAL Array with the input data.
ARY_FLL_LREAL LREAL Fills a LREAL Array with the input data.
ARY_FLL_TIME TIME Fills a TIME Array with the input data.
ARY_FLL_DATE DATE Fills a DATE Array with the input data.
ARY_FLL_TOD TOD Fills a TOD Array with the input data.
ARY_FLL_DT DT Fills a DT Array with the input data.

BOOL

ARY_FLL_***ARY_FLL_***ARY_FLL_***ARY_FLL_***

ENO EN
DATA
IN

OUT

BOOL BOOL
ANY

INDX
LEN

INT
INT

ANY_ARY

Filling an array with data

8. Basic Function/Function Block Library

 8-121

 Error

 ▷ If it is designated beyond the array range, _ERR and _LER flags are set.
 ▷ If an error occurs, there’s no change in arrays and OUT is off.

※ An error occurs when:
 INDX < 0 or INDX > max. element number of IN
 INDX + LEN ≥ max. element number of IN

 Program example
LD

(1) If input condition (%M0) is on, ARY_FLL_INT function is executed.
(2) It fills 4 elements of IN_ARY starting from INDX with 34.
(3) If LEN is 9, it is beyond the array range and an error occurs; _ERR and _LER flags are set and the output

(%Q1.13.15) is on.

8. Basic Function/Function Block Library

 8-122

ARY_MOVE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

펑 션 설 명

 Input

EN : executes the function in case of 1
 MOVE_NUM: array number to move

IN1: array variable to move (STRING type, unavailable)
IN2: array variable to be moved

(STRING type, unavailable)
 IN1_INDX: starting pointer of array to move
 IN2_INDX: starting pointer of array to be moved

Output

ENO: without an error, it will be 1
 OUT: without an error, it will be 1

 Function
▷ If EN is 1, it moves IN1 data to IN2.
▷ It copies MOVE_NUM elements of IN1 (from IN1_INDX) and pastes it in IN2 (from IN2_INDX).
▷ IN1 and IN2 are the same data type (The number of each array can be different).
▷ The data size is as follows:

Data size Variable type
1 Bit BOOL
8 Bit BYTE, SINT, USINT
16 Bit WORD / INT / UINT / DATE
32 Bit DWORD / DINT / UDINT / TIME / TOD
64 Bit DT

 Error
▷ An error occurs when IN1 and IN2 data size are different.
▷ An error occurs when:

1) the array number of IN1 Array < (IN1_INDX + MOVE_NUM)
2) the array number of IN2 Array < (IN2_INDX + MOVE_NUM)

Then ARY_MOVE function is not executed, OUT is 0, ENO is off and _ERR and _LER flags are set.

BOOL

ARY_MOVEARY_MOVEARY_MOVEARY_MOVE

ENO EN
MOVE_NUM
IN1

OUT

BOOL BOOL
INT

IN2
IN1_INDX

ANY_ARRAY
INT
INT IN2_INDX

ANY_ARRAY

Array move

8. Basic Function/Function Block Library

 8-123

 Program example
LD

Variable name Variable type Array number
ARY_SRC INT 10
ARY_DES WORD 15

(1) If the transition condition (A) is on, ARY_MOVE function is executed.
(2) It moves 5 elements from ARY_SRC[5] to ARY_DES[10].
 Now the data type of ARY_DES is WORD, it’s hexadecimal.

Before After
ARY_SRC[0] 0 ARY_DES[0] 16#0 ARY_SRC[0] 0 ARY_DES[0] 16#0
ARY_SRC[1] 11 ARY_DES[1] 16#1 ARY_SRC[1] 11 ARY_DES[1] 16#1
ARY_SRC[2] 22 ARY_DES[2] 16#2 ARY_SRC[2] 22 ARY_DES[2] 16#2
ARY_SRC[3] 33 ARY_DES[3] 16#3 ARY_SRC[3] 33 ARY_DES[3] 16#3
ARY_SRC[4] 44 ARY_DES[4] 16#4 ARY_SRC[4] 44 ARY_DES[4] 16#4
ARY_SRC[5] 55 ARY_DES[5] 16#5 ARY_SRC[5] 55 ARY_DES[5] 16#5
ARY_SRC[6] 66 ARY_DES[6] 16#6 ARY_SRC[6] 66 ARY_DES[6] 16#6
ARY_SRC[7] 77 ARY_DES[7] 16#7 ARY_SRC[7] 77 ARY_DES[7] 16#7
ARY_SRC[8] 88 ARY_DES[8] 16#8 ARY_SRC[8] 88 ARY_DES[8] 16#8
ARY_SRC[9] 99 ARY_DES[9] 16#9 ARY_SRC[9] 99 ARY_DES[9] 16#9
 ARY_DES[10] 16#A ARY_DES[10] 16#37
 ARY_DES[11] 16#B ARY_DES[11] 16#42
 ARY_DES[12] 16#C ARY_DES[12] 16#4D
 ARY_DES[13] 16#D ARY_DES[13] 16#58
 ARY_DES[14] 16#E ARY_DES[14] 16#63

8. Basic Function/Function Block Library

 8-124

ARY_ROT_C_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 STRT: starting bit to rotate
 END: ending bit to rotate
 N: number to rotate

 Output
 ENO: without an error, it will be 1
 OUT: without an error, it will be 1

 In/Out
 SRC: Source Array to rotate
 CYO: output Carry bit Array

 Function

 ▷ It rotates as many bits of array elements as they’re specified.

 ▷ Setting:

 - Scope: it sets a rotation scope with STRT and END.

 - Rotation direction and time: it rotates N times from STRT to END.

- Output: the result is stored in ANY_BIT_ARY and a bit array data from END to STRT is written at CYO.

Function In/out Array type Description
ARY_ROT_C_BYTE BYTE
ARY_ROT_C_WORD WORD
ARY_ROT_C_DWORD DWORD
ARY_ROT_C_LWORD LWORD

It rotates elements of an array as many bits as they’re
specified.

After

Before

BOOL

ARY_ROT_C_***ARY_ROT_C_***ARY_ROT_C_***ARY_ROT_C_***

ENO EN
SRC OUT

BOOL BOOL

STRT
END UINT

UINT
ANY_BIT_ARY

N
CYO

UINT
BOOL_ARY

Bit rotation of array with carry

8. Basic Function/Function Block Library

 8-125

 Error
 ▷ If the number of SRC and CYO Arrays are different, _ERR and _LER flags are set.
 ▷ If STRT and END are out of bit range of SRC, an error occurs.
 ▷ When an error occurs, there’s no change in SRC and CYO.

 Program example
LD

(1) If the input condition (%M2) is on, ARY_ROT_C_WORD function is executed.
(2) It rotates 2 times the bit (from 4 to 13 bit) arrays of SRC_ARY from STRT to END.
(3) The result is stored at SRC_ARY and the carry bit arrays are written in CYO BOOL Array.

(Before)
SRC_ARY : 16#F7F7
 16#E3E3
 16#C1C1
 16#8080
(N) : 2
(After)
SRC_ARY : 16#FDF7
 16#E8F3
 16#C071
 16#8020
CYO : 2#1100

Before

After

8. Basic Function/Function Block Library

 8-126

ARY_SCH_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 DATA: data to search
 IN: array to search

 Output
 ENO: without an error, it will be 1
 OUT: if it finds, it will be 1

 In/Out

P: first position of an object array
N: total number of array elements equal to an

object

 Function

It finds an equal value of input in arrays and produces its first position and total number. When it finds at least one
which is equal to an object in arrays, OUT is 1.

Function Input Array type Description

ARY_SCH_BOOL BOOL Search in BOOL Array.
ARY_SCH_BYTE BYTE Search in BYTE Array.
ARY_SCH_WORD WORD Search in WORD Array.
ARY_SCH_DWORD DWORD Search in DWORD Array.
ARY_SCH_LWORD LWORD Search in LWORD Array.
ARY_SCH_SINT SINT Search in SINT Array.
ARY_SCH_INT INT Search in INT Array.
ARY_SCH_DINT DINT Search in DINT Array.
ARY_SCH_LINT LINT Search in LINT Array.
ARY_SCH_USINT USINT Search in USINT Array.
ARY_SCH_UINT UINT Search in UINT Array.
ARY_SCH_UDINT UDINT Search in UDINT Array.
ARY_SCH_ULINT ULINT Search in ULINT Array.
ARY_SCH_REAL REAL Search in REAL Array.
ARY_SCH_LREAL LREAL Search in LREAL Array.
ARY_SCH_TIME TIME Search in TIME Array.
ARY_SCH_DATE DATE Search in DATE Array.
ARY_SCH_TOD TOD Search in TOD Array.
ARY_SCH_DT DT Search in DT Array.

BOOL

ARY_SCHARY_SCHARY_SCHARY_SCH

ENO EN
DATA
IN

OUT

BOOL BOOL
ANY

P
N

INT
INT

ANY_ARY

Array search

8. Basic Function/Function Block Library

 8-127

 Program example
LD

(1) If the input condition (%M1) is on, ARY_SCH_BYTE function is executed.
(2) When IN_ARY is a 10-byte array, if you search for “22h” in this array, three bytes are found as the above.
(3) The result is: 1) 1, the first position of an array, is stored at POS; 2) 3, the total number, is stored at NUM.

The total number is 3, so the output %Q1.3.0 is on.

8. Basic Function/Function Block Library

 8-128

ARY_SFT_C_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 CYI: Input Carry bit Array
 STRT: starting bit to shift
 END: ending bit to shift
 N: bit number to shift

 Output
 ENO: without an error, it will be 1
 OUT: without an error, it will be 1

 In/Out
 SRC: Source Array to shift
 CYO: Output Carry bit Array after shift

 Function

 ▷ It shifts as many bits of array elements as they’re specified.

 ▷ Setting:
 - Scope: it sets a shifting scope with STRT and END.
 - Shifting direction and time: it shifts N times from STRT to END.
 - Input data: it fills the empty bits with input data (CYI).

- Output: the result is stored in ANY_BIT_ARY and an overflowing bit array data from END is written
at CYO.

Function In/Out Array type Description
ARY_SFT_C_BYTE BYTE

ARY_SFT_C_WORD WORD
ARY_SFT_C_DWORD DWORD
ARY_SFT_C_LWORD LWORD

It shifts as many bits of array elements as they’re specified.

Before

After

BOOL

ARY_SFT_C_***ARY_SFT_C_***ARY_SFT_C_***ARY_SFT_C_***

ENO EN
CY1
SRC

OUT

BOOL BOOL
BOOL_ARY

STRT
END

UINT
UINT

ANY_BIT_ARY

N
CYO

UINT
UINT

Array bit shift left with carry

8. Basic Function/Function Block Library

 8-129

 Error

 ▷ If the number of CYI, SRC and CYO Array are different, _ERR and _LER flags are set.
 ▷ An error occurs if STRT and END are out of SRC range.
 ▷ When an error occurs, there’s no change in SRC and CYO.

 Program example
LD

(1) If input condition (%M2) is on, ARY_SFT_C_WORD function is executed.
(2) It shifts a bit array (from 4 to 13 bit) of SRC 3 times from STRT to END.
(3) The bit array after shifting is filled with CYI (2#0011).
(4) It produces its shifting result at SRC_ARY and a carry bit array is written at CYO.

(Before)
CYI: 2#0011
SRC_ARY: 16#F7F7
 16#E3E3
 16#C1C1
 16#8080

(N): 3

(After)
SRC_ARY: 16#C6F7
 16#C473
 16#F831
 16#B810
CYO: 2#1110

Before

After

8. Basic Function/Function Block Library

 8-130

ARY_SWAP_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1
 IN1: array input

 Output
 ENO: without an error, it will be 1
 OUT: Dummy output

 In/Out
 IN2: array output after swapping

 Function

It swaps upper/lower elements after dividing an array.

Function Input type Description
ARY_SWAP_BYTE BYTE Swaps upper/lower nibble of byte elements.
ARY_SWAP_WORD WORD Swaps upper/lower byte of WORD elements.
ARY_SWAP_DWORD DWORD Swaps upper/lower WORD of DWORD elements.
ARY_SWAP_LWORD LWORD Swaps upper/lower DWORD of LWORD elements.

 Error

_ERR and _LER flags are set if two arrays are different; there’s no change in an IN2 array.

 Program example
LD

(1) If the transition condition (%M0) is on, ARY_SWAP_WORD function is executed.
(2) If IN_ARY data is as below:

IN_ARY[0] 12ABH
IN_ARY[1] 23BCH
IN_ARY[2] 34CDH

BOOL

ARY_SWAP_***ARY_SWAP_***ARY_SWAP_***ARY_SWAP_***

ENO EN
IN1
IN2

OUT

BOOL BOOL
ANY_BIT_ARY
ANY_BIT_ARY

Upper/lower elements swapping of an array

8. Basic Function/Function Block Library

 8-131

OUT_ARY data is as follows:
OUT_ARY[0] AB12H
OUT_ARY[1] BC23H
OUT_ARY[2] CD34H

8. Basic Function/Function Block Library

 8-132

ASC_TO_BCD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: ASCII input

 Output
 ENO: without an error, it will be 1
 OUT: BCD output

 Function

It converts two ASCII data into two-digit BCD (Binary Coded Decimal) data.

 Error
If IN is not hexadecimal number between 0 ~ 9, the output is 16#00 and _ERR and _LER flags will be set.

 Program example
LD

(1) If the transition condition (%M0) is on, ASC_TO_BCD function is executed.
(2) If input variable ASCII_VAL (WORD) = 16#3732 = “72”, output variable BCD_VAL (BYTE) = 16#72.

BYTE

ASC_TO_BCDASC_TO_BCDASC_TO_BCDASC_TO_BCD

ENO EN
IN1 OUT

BOOL BOOL
WORD

Converts ASCII to BCD

8. Basic Function/Function Block Library

 8-133

ASC_TO_BYTE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN : executes the function in case of 1.
 IN : ASCII input

 Output
 ENO : without an error, it will be 1
 OUT : BYTE Output

 Function

It converts two ASCII data to 2-digit hexadecimal (HEX).

 Error
If IN is not between ‘0’ and ‘F’, its output is 0 and _ERR/_LER flags are set.

 Program example
LD

(1) If the transition condition (%M0) is on, ASC_TO_BYTE function is executed.
(2) If input ASCII_VAL (WORD) = 16#4339, output BYTE_VAL (BYTE) = 16#C9.

BYTE

ASC_TO_BYTEASC_TO_BYTEASC_TO_BYTEASC_TO_BYTE

ENO EN
IN1 OUT

BOOL BOOL

WORD

Converts ASCII to BYTE data

8. Basic Function/Function Block Library

 8-134

BCD_TO_ASC
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: BCD input

 Output
 ENO: without an error, it will be 1
 OUT: ASCII Output

 Function

It converts two BCD data to two ASCII data.

 Error
If IN is not between 0 and 9, its output is 16#3030 (“00”) and _ERR/_LER flags are set.

 Program example
LD

(1) If the transition condition (%M0) is on, BCD_TO_ASC function is executed.
(2) If input BCD_VAL (BYTE) = 16#85, output ASCII_VAL (WORD) = 16#3835 = “85”.

WORD

BCD_TO_ASCBCD_TO_ASCBCD_TO_ASCBCD_TO_ASC

ENO EN
IN1 OUT

BOOL BOOL
BYTE

Converts BCD to ASCII data

8. Basic Function/Function Block Library

 8-135

BIT_BYTE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN1 ~ IN8: Bit input

 Output
 ENO: without an error, it will be 1

OUT: Byte output

 Function

It combines 8 bits into one byte.
IN8: MSB (Most Significant Bit), IN1: LSB (Least Significant Bit)

 Program example
LD

(1) If the transition condition (%M3) is on, BIT_BYTE function is executed.
(2) If 8 input are (from INPUT1 to INPUT 8) {0,1,1,0,1,1,0,0}, OUTPUT (BYTE) = 2#00110110.

BYTE

BIT_BYTEBIT_BYTEBIT_BYTEBIT_BYTE

ENO EN
IN1 OUT

BOOL BOOL
BOOL

IN1 BOOL
IN1 BOOL
IN1 BOOL
IN1 BOOL
IN1 BOOL
IN1 BOOL

IN1 BOOL

Combines 8 bits into BYTE

8. Basic Function/Function Block Library

 8-136

BMOV_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input

EN : executes the function in case of 1.
 IN1: String data having bit data to be combined
 IN2: String data having bit data to be combined
 IN1_P: Start bit position on IN1 set data
 IN2_P: Start bit position on IN2 set data
 N: Bit number to be combined
 Output

 ENO: without an error, it will be 1
 OUT: Combined bit string data output

 Function
▷If EN is 1, it takes N bits of IN1 starting from the IN1_P bit and moves it to IN2 starting from IN2_P bit.
▷If N1 = 1111 0000 1111 0000, IN2 = 0000 1010 1010 1111, IN1_P = 4, IN2_P = 8, N = 4, then output data

is 0000 1111 1010 1111. Input data types are B (BYTE), W (WORD), D (DWORD), L (LWORD);
L (LWORD) are available for GM1/2. You can use one of functions (‘ENCO_B’, ‘ENCO_W’, ‘ENCO_D’,
‘ENCO_L’) according to input data.

 Error
If IN1_P and IN2_P exceed the data range or N is negative or N bit of IN1_P and IN2_P exceeds the data
range, _ERR and _LER flags are set.

 Program example
 LD IL

 LD %M0
 JMPN LSB
 LD SOURCE
 BMOV_W IN1:= CURRENT RESULT
 IN2:= DESTINE
 IN1_P:= 0
 IN2_P:= 8
 N:= 4
 ST DESTINE
 LSB :

B,W,D,L

BMOV_***BMOV_***BMOV_***BMOV_***

ENO EN

IN2
OUT

BOOL BOOL

IN1_P
IN2_P

INT
INT

N INT

B,W,D,L
IN1 B,W,D,L

Moves part of a bit string

8. Basic Function/Function Block Library

 8-137

(1) If the transition condition (%M0) is on, BMOV_W function is executed.
(2) If input SOURCE = 2#0101 1111 0000 1010, DESTINE = 2#0000 0000 0000 0000, IN1_ P = 0, IN2_P = 8,

N = 4, then the result DESTINE is 2#0000 1010 0000 0000.

 Input (IN1): SOURCE (WORD) = 16#5F0A
 (IN2): DESTINE (WORD) = 16#0000
 (IN1_ P) = 0
 (IN2_P) = 8
 (N) = 4

 Output (OUT): DESTINE (WORD) = 16#0A00
 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(BMOV_W)

8. Basic Function/Function Block Library

8-138

BSUM_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

 Function Description

 Input

EN: executes the function in case of 1.
IN: input data to detect ON bit

 Output

ENO: without an error, it will be 1
OUT: Result data (sum of on-bit number)

 Function
If EN is 1, it counts bit number of 1 among IN bit string and produces output OUT. Input data types are
BYTE, WORD, DWORD, LWORD. LWORD is available only for GM1/2.

FUNCTION IN type Description

BSUM_BYTE BYTE
BSUM _WORD WORD
BSUM _DWORD DWORD
BSUM _LWORD LWORD

You can select one of these functions according to input data.

■ Program example
 LD IL

 LD %I0.0.0
 JMPN AAA
 LD SWITCHS
 BSUM_WORD
 ST ON_COUNT
 AAA:

(1) If the transition condition (%M0) is on, BSUM_WORD function is executed.
(2) If input SWITCHS (WORD) = 2#0000 0100 0010 1000, then it counts on-bit number, 3. So the output

ON_COUNT (INT) = 3.

INT

BSUM_*BSUM_*BSUM_*BSUM_*

ENO EN
IN OUT

BOOL BOOL
B,W,D,L

Counts on-bit number of input

8. Basic Function/Function Block Library

 8-139

BYTE_BIT
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: byte input

 Output
 ENO: without an error, it will be 1
 OUT: Dummy output

 In/Out
 QO1~8: bit output

 Function

It divides one byte into 8 bits (QO1~QO2).
 QO8: MSB (Most Significant Bit), QO1: LSB (Least Significant Bit)

 Program example
LD

(1) If the transition condition (%M0) is on, BYTE_BIT function is executed.
(2) If INPUT = 16#AC = 2#10101100, it distributes INPUT from Q01 to Q08 in order.

The order is 2#{0, 0, 1, 1, 0, 1, 0, 1}.

BOOL

BYTE_BITBYTE_BITBYTE_BITBYTE_BIT

ENO EN
IN OUT

BOOL BOOL
BYTE

Q02 BOOL
Q03 BOOL
Q04 BOOL
Q05 BOOL
Q06 BOOL
Q07 BOOL

Q08 BOOL

Q01 BOOL

Divides byte into 8 bits

8. Basic Function/Function Block Library

8-140

BYTE_TO_ASC
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: BYTE input

 Output
 ENO: without an error, it will be 1
 OUT: ASCII output

 Function
▷ It converts 2-digit hexadecimal into two ASCII data.
 Ex) 16#12 -> 3132

 ▷ In case of 16#A~F, it produces ASCII data for character.

 Program example
LD

(1) If the transition condition (%M0) is on, BYTE_TO_ASC function is executed.
(2) If input BYTE_VAL (BYTE) = 16#3A, output ASCII_VAL (WORD) = 16#3341 = ‘3’, ‘A’.

WORD

BYTE_TO_ASCBYTE_TO_ASCBYTE_TO_ASCBYTE_TO_ASC

ENO EN
IN1 OUT

BOOL BOOL
BYTE

Converts byte into ASCII

8. Basic Function/Function Block Library

8-141

BYTE_WORD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 LOW: lower BYTE Input
 HIGH: upper BYTE Input

 Output
 ENO: without an error, it will be 1
 OUT: WORD output

 Function

It combines two bytes into one word.
 LOW: lower byte input, HIGH: upper byte input

 Program example
LD

(1) If the transition condition (%M3) is on, BYTE_WORD function is executed.
(2) If input BYTE_IN1 = 16#56 and BYTE_IN2 = 16#AD, output variable OUTPUT = 16#AD56.

WORD

BYTE_WORDBYTE_WORDBYTE_WORDBYTE_WORD

ENO EN
LOW
HIGH

OUT

BOOL BOOL

BYTE
BYTE

Combines 2 bytes into WORD

8. Basic Function/Function Block Library

8-142

DEC_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function 설 명

 Input

EN: executes the function in case of 1.
 IN: input data to decrease

 Output

ENO: without an error, it will be 1
 OUT: result data

■ Function
If EN is 1, it produces an output after decreasing bit-string data of IN by 1.
Even though the underflow occurs, an error won’t occur and if the result is 16#0000, then the output result
data is 16#FFFF.
Input data types are BYTE, WORD, DWORD and LWORD. LWORD is available only for GM1/2.

FUNCTION IN/OUT type Description
DEC_BYTE BYTE
DEC_WORD WORD
DEC_DWORD DWORD
DEC_LWORD LWORD

You can select one of these functions according to in/out data type.

■ Program example
 LD IL

 LD %M0
 JMPN KKK
 LD %MW100
 DEC_WORD
 ST %MW20
 KKK:

(1) If the transition condition (%M0) is on, DEC_WORD function is executed.
(2) If input variable %MW100 = 16#0007 (2#0000 0000 0000 0111), output variable %MW20 = 16#0006
(2#0000 0000 0000 0110).

ANY_BIT

DEC_***DEC_***DEC_***DEC_***

ENO EN
IN OUT

BOOL BOOL
ANY_BIT

Decrease IN data by 1 bit

8. Basic Function/Function Block Library

8-143

DECO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
EN: executes the function in case of 1.

 IN: input data for decoding

 Output

ENO: without an error, it will be 1
 OUT: decoding result data

■ Function
If EN is 1, it turns on ‘the designated position bit of output bit-string data’ according to the value of IN, and
produces an output. Output data types are BYTE, WORD, DWORD and LWORD. LWORD is available only
for GM1/2.

FUNCTION OUT type Description
DECO_BYTE BYTE
DECO_WORD WORD
DECO_DWORD DWORD
DECO_LWORD LWORD

You can select one of these functions according to output data type.

■ Error
If input data is a negative number or bit position data is out of output-type range, (in case of DECO_WORD,

it’s more than 16), then OUT is 0 and _ERR/_LER flags are set.

■ Program example
 LD IL

 LD %M0
 JMPN AAA
 LD ON_POSITION
 DECO_WORD
 ST RELAYS
 AAA:

(1) If the transition condition (%M0) is on, DECO_WORD function is executed.
(2) If ON_POSITON (INT) = 5, then RELAYS (WORD) = 2#0000 0000 0010 0000.

ANY_BIT

DECO_***DECO_***DECO_***DECO_***

ENO EN
IN OUT

BOOL BOOL

INT

Decodes the designated bit position

8. Basic Function/Function Block Library

8-144

DEG_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

Input

 EN: executes the function in case of 1.
 IN: radian input

 Output
 ENO: without an error, it will be 1
 OUT: degree output

 Function

It converts radian input into degree output.

Function Input type Output type Description
DEG_REAL REAL REAL
DEG_LREAL LREAL LREAL It converts input (radian) into output (degree).

 Program example

LD

(1) If the transition condition (%M0) is on, DEG_LREAL function is executed.
(2) If input variable RAD_VAL = 1.0, then output variable DEG_VAL = 5.7295779513078550e+001.

ANY_REAL

DEGDEGDEGDEG

ENO EN
IN OUT

BOOL BOOL
ANY_REAL

Converts radian into degree

8. Basic Function/Function Block Library

8-145

DIS_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN1: input data
 SEG: designated bit array for data distribution

 Output
 ENO: without an error, it will be 1
 OUT: Dummy Output

 In/Out
 IN2: distributed WORD-array Output

 Function

It distributes input data over IN2 after segmenting input data by bit number set by SEG.

Function Input type Description
DIS_BYTE BYTE
DIS_WORD WORD
DIS_DWORD DWORD
DIS_LWORD LWORD

It segments IN1 input by bit number set by SEG and produces IN2 array.

 Error
If the sum of designated number of SEG exceeds input variable bit number, _ERR/_LER flags are set.

BOOL

DIS_***DIS_***DIS_***DIS_***

ENO EN
IN1 OUT

BOOL BOOL
ANY_BIT

SEG

IN2

INT_ARY
ANY_BIT_ARY

Data distribution

8. Basic Function/Function Block Library

8-146

 Program example
LD

(1) If the transition condition (%M0) is on, DIS_WORD function is executed.
(2) If input variable WORD_IN = 16#3456, SEG_ARY = {3, 4, 5, 4}, then, output variable DIS_DATA is:

DIS_DATA[0] = 16#0006
DIS_DATA[1] = 16#000A
DIS_DATA[2] = 16#0008
DIS_DATA[3] = 16#0003

