
8. Basic Function/Function Block Library

8-147

DWORD_LWORD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 LOW: lower DWORD Input
 HIGH: upper DWORD Input

 Output
 ENO: without an error, it will be 1.
 OUT: LWORD Output

 Function

It combines 2 DWORD data into one LWORD data.
LOW: lower DWORD Input, HIGH: upper DWORD Input

 Program example
LD

(1) If the transition condition (%M11) is on, DWORD_LWORD function is executed.
(2) If input variable INPUT1 = 16#1A2A3A4A5A6A7A8A and INPUT2 = 16#8C7C6C5C4C3C2C1C, then,
output variable RESULT = 16#8C7C6C5C4C3C2C1C1A2A3A4A5A6A7A8A.

LWORD

DWORD_LWORDDWORD_LWORDDWORD_LWORDDWORD_LWORD

ENO EN
LOW
HIGH

OUT

BOOL BOOL
DWORD
DWORD

Combines two DWORD data into LWORD

8. Basic Function/Function Block Library

 8-148

DWORD_WORD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: DWORD Input

 Output
 ENO: without an error, it will be 1.
 OUT: Dummy Output

 In/Out
 LOW: lower WORD Output
 HIGH: upper WORD Output

 Function

It divides one DWORD into two WORD data.
 LOW: lower WORD Output, HIGH: upper WORD Output

 Program example
LD

(1) If the transition condition (%M5) is on, DWORD_WORD function is executed.
(2) If input variable INPUT = 16#11223344AABBCCDD, then,

WORD_OUT1 = 16#AABBCCDD and WORD_OUT2 = 16#11223344.

BOOL

DWORD_WORDDWORD_WORDDWORD_WORDDWORD_WORD

ENO EN
IN
LOW

OUT

BOOL BOOL

DWORD

HIGH WORD
WORD

Divides DWORD into 2 WORD data

8. Basic Function/Function Block Library

8-149

ENCO_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input

EN: executes the function in case of 1.
 IN: input data to be encoded

 Output

ENO: without an error, it will be 1
 OUT: result data after encoding

■ Function
If EN is 1, the output is the highest on-bit position among IN bit string. Input data types are BYTE, WORD,
DWORD and LWORD. LWORD is available only for GM1/2.

FUNCTION IN type Description
ENCO_BYTE BYTE
ENCO_WORD WORD
ENCO_DWORD DWORD
ENCO_LWORD LWORD

You can select one of these functions according to the input data type.

■ Error
_ERR and _LER flags are set and OUT is –1 if no bit is 1.

■ Program example
 LD IL

 LD %M0
 JMPN AAA
 LD SWITCHS
 ENCO_W
 ST ON_POSITION
 AAA:

(1) If the transition condition (%M0) is on, ENCO_WORD function is executed.
(2) If SWITCHS (WORD) = 2#0000 1000 0000 0010, then, the highest on-bit position is 11. Therefore, output
ON_POSITON (INT) is ‘11’.

INT

ENCO_***ENCO_***ENCO_***ENCO_***

ENO EN
IN OUT

BOOL BOOL
ANY_BIT

Encodes the on-bit position of IN

8. Basic Function/Function Block Library

 8-150

GET_CHAR
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: STRING input
 N: position in a character STRING

 Output
 ENO: without an error, it will be 1.
 OUT: Byte Output

 Function

It extracts one byte from a character STRING starting from N.

 Error
▷ _ERR/_LER flags are set if N exceeds the number of byte in STRING.
▷ If an error occurs, the output is 16#00.

 Program example
LD

(1) If the transition condition (%M0) is on, GET_CHAT function is executed.
(2) When input INPUT (STRING) = “LG GLOFA PLC”, if you extract 4th character from this string, output

variable OUTPUT is 16#47 (“G”).

INT

GET_CHARGET_CHARGET_CHARGET_CHAR

ENO EN
IN
N

OUT

BOOL BOOL
STRING BYTE

Gets one character from a character string

8. Basic Function/Function Block Library

8-151

INC_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input

EN: executes the function in case of 1.
 IN: Input data to increase

 Output

ENO: without an error, it will be 1
 OUT: result data after increase

■ Function
If EN is 1, it increases IN bit string data by 1 and produces an output.
An error does not occur when there’s an overflow; the result is 16#0000 in case of 16#FFFF.
Input data types are BYTE, WORD, DWORD and LWORD. LWORD is available only for GM1/2.

FUNCTION IN/OUT type Description
INC_BYTE BYTE
INC_WORD WORD
INC_DWORD DWORD
INC_LWORD LWORD

You can select one of these functions according to the data type.

■ Program example
 LD IL

 LD %M0
 JMPN BBB
 LD %MW100
 INC_WORD
 ST %MW100
 AAA:

(1) If the transition condition (%M0) is on, INC_WORD function is executed.
(2) If input variable %MW100 = 16#0007 (2#0000 0000 0000 0111), then

output variable %MW100 = 16#0008(2#0000 0000 0000 1000).

ANY_BIT

INC_***INC_***INC_***INC_***

ENO EN
IN OUT

BOOL BOOL
ANY_BIT

Increase IN data by 1

8. Basic Function/Function Block Library

8-152

LWORD_DWORD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: LWORD Input

 Output
 ENO: without an error, it will be 1.
 OUT: Dummy Output

 In/Out
 LOW: lower DWORD Output
 HIGH: upper DWORD Output

 Function

 ▷ It divides one LWORD into two DWORD data.
 LOW: lower DWORD Output, HIGH: upper DWORD Output

 Program example
LD

(1) If the transition condition (%M10) is on, LWORD_DWORD function is executed.
(2) If the input variable INPUT = 16#AAAABBBBCCCCDDDDABCDABCDABCDABCD, then,

DWO_OUT1 = 16#ABCDABCDABCDABCD
DWO_OUT2 = 16#AAAABBBBCCCCDDDD.

BOOL

LWORD_DWORDLWORD_DWORDLWORD_DWORDLWORD_DWORD

ENO EN
IN OUT

BOOL BOOL
LWORD

LOW

HIGH

DWORD
DWORD

Divides LWORD into two DWORD data

8. Basic Function/Function Block Library

8-153

MCS
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

Input
EN: executes the function in case of 1.
NUM: Nesting (0~15)

Output

ENO: If MCS is executed, it will be 1
 OUT: Dummy (always 0)

 Function
▷ If EN is on, MCS function is executed and the program between MCS and MCSCLR function is

normally executed.
▷ If EN is off, the program between MCS and MCSCLR function is executed as follows:

Instruction Description
Timer Current value (CV) becomes 0 and the output (Q) becomes off.
Counter Output (Q) becomes off and CV retains its present state.
Coil All becomes off.
Negated coil All becomes off.
Set coil, reset coil All retains its current value.
Function, function block All retains its current value.

▷ Even when EN is off, scan time is not shortened because the instructions between MCS and MCSCLR
function are executed as the above.
▷ Nesting is available in MCS. That is to say, Master Control is divided by Nesting (NUM). You can set up
Nesting (NUM) from 0 to 15 and if you set it more than 16, MCS is not executed normally.
Note: if you use MSC without ‘MCSCLR’, MCS function is executed till the end of the program.

BOOL

MCSMCSMCSMCS

ENO EN
NUM OUT

BOOL BOOL

INT

Master Control

8. Basic Function/Function Block Library

8-154

 Program example

If A is on, it’s executed.

If A and B are on, it’s
executed

If A, B, and C are on, it’s
executed.

If A and B are on, it’s executed

If A is on, it’s executed.

If A, B, and C are on, it’s
executed.

8. Basic Function/Function Block Library

8-155

MCSCLR
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
EN: executes the function in case of 1.

 NUM: Nesting (0~15)

 Output

ENO: if MCSCLR is executed, it will be 1
 OUT: if MCSCLR is executed, it will be 1

 Function
▷ It clears Master Control instruction. And it indicates the end of Master Control.
▷ If MCSCLR function is executed, it clears all the MCS instructions which are less than or equal to
Nesting (NUM).

* There’s no contact before MCSCLR function.

 Program example
Refer to the MCS function example.

BOOL

MCSCLRMCSCLRMCSCLRMCSCLR

ENO EN
NUM OUT

BOOL BOOL

INT

Master Control Clear

8. Basic Function/Function Block Library

8-156

MEQ_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN1: Input1
 IN2: Input2
 MASK: input data to mask

 Output
 ENO: without an error, it will be 1.
 OUT: when equal, it will be 1

 Function

 ▷ It compares whether two input variables are equal after masking. If it masks an 8-bit variable with 2#11111100,

then, lower 2 bits are excluded when it compares input values.

 ▷ It’s available to see whether or not specific bits are on in a variable. For example, in case of comparing 8-bit

variables, IN1 is an input variable, IN2 is 16#FF, and MASK for masking is a bit array 2#00101100. If IN1 and

IN2 after masking are equal, then output OUT is 1.

Function Input type Description

MEQ_BYTE BYTE

MEQ_WORD WORD

MEQ_DWORD DWORD

MEQ_LWORD LWORD

It compares whether two variables are equal after making.

BOOL

MEQMEQMEQMEQ

ENO EN
IN1 OUT

BOOL BOOL
ANY_BIT

IN2

MASK

ANY_BIT
ANY_BIT

Masked Equal

8. Basic Function/Function Block Library

8-157

 Program example

LD

(1) If the transition condition (%M0) is on, MEQ_BYTE function is executed.

(2) Input variable INPUT1 (BYTE) = 2#01011100

 INPUT2 (BYTE) = 2#01110101

MASK (BYTE) = 2#11010110

Then, the comparing bits of input variables after masking are as follows:

 INPUT1 (BYTE) = 2#01010100

 INPUT2 (BYTE) = 2#01010100

INPUT1 and INPUT2 are equal, therefore, output contact %Q1.3.20 is on.

8. Basic Function/Function Block Library

8-158

PUT_CHAR
Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 DATA: Byte input to insert a string
 IN: string input
 N: setting position in a string

 Output
 ENO: without an error, it will be 1.
 OUT: string output

■ Function

It overwrites one byte input on a specific position (N) string.

■ Error

 ▷ If N value exceeds a byte number of a string, _ERR/_LER flags are set.

 ▷ If an error occurs, the output is 16#00.

■ Program example

LD

(1) If the transition condition (%M1) is on, PUT_CHAR function is executed.

(2) If input variable INPUT = 16#41 (“A”) and STRING_IN = “TOKEN”, and N = 2, then, output RESULT is

“TAKEN”.

INT

PUT_CHARPUT_CHARPUT_CHARPUT_CHAR

ENO EN
DATA

N

OUT

BOOL BOOL
BYTE BYTE

IN STRING

Puts a character in a string

8. Basic Function/Function Block Library

8-159

RAD_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: degree Input

 Output
 ENO: without an error, it will be 1.
 OUT: radian output

 Function

 ▷ It converts a degree value (°) into a radian value.
 ▷ If the degree is over 360°, its converts normally.

For example, if input is 370°, output is 370° - 360° = 10°.

Function Input type Output type Description
RAD_REAL REAL REAL
RAD_LREAL LREAL LREAL It converts a degree value (°) into a radian value.

 Program example

LD

(1) If the transition condition (%M0) is on, RAD_REAL function is executed.
(2) If input variable DEG_VAL = 127(°), its output RAD_VAL = 2.21656823.

ANY_REAL

RADRADRADRAD

ENO EN
IN OUT

BOOL BOOL
ANY_REAL

Converts degree into radian

8. Basic Function/Function Block Library

8-160

ROTATE_A_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 N: element number to rotate
 STRT: starting position to rotate in an array block
 END: ending position to rotate in an array block

 Output
 ENO: without an error, it will be 1
 OUT: overflowing data

 In/Out
 SRC: array block to rotate

 Function

▷ It rotates designated elements of an array block in the chosen direction.

▷ Setting:

 - Scope: STRT and END set a data array to rotate

 - Rotation direction and time: rotates N times in the chosen direction set by STRT and END (STRT END)

- Input data setting: fills an empty element after rotation with Input data (IN)

- Output: the result is written at ANY_ARY designated by SRC, and the data to rotate from END to
STRT is written at OUT.

STRT : 1

END : 7

ARRAY(0)

ARRAY(1)

ARRAY(2)

ARRAY(3)

ARRAY(4)

ARRAY(5)

ARRAY(6)

ARRAY(7)

ARRAY(8)

ARRAY(9)

ARRAY(0)

ARRAY(1)

ARRAY(2)

ARRAY(3)

ARRAY(4)

ARRAY(5)

ARRAY(6)

ARRAY(7)

ARRAY(8)

ARRAY(9)
OUT

N = 2

SRC SRC

After Before

STRING

ROTATE_A_***ROTATE_A_***ROTATE_A_***ROTATE_A_***

ENO EN
SRC OUT

BOOL BOOL

STRT
END

UINT

UINT
N INT

ANY_ARY

Rotates array elements

8. Basic Function/Function Block Library

8-161

Function In/Out array type Description
ROTATE_A_BOOL BOOL
ROTATE_A_BYTE BYTE
ROTATE_A_WORD WORD
ROTATE_A_DWORD DWORD
ROTATE_A_LWORD LWORD
ROTATE_A_SINT SINT
ROTATE_A_INT INT
ROTATE_A_DINT DINT
ROTATE_A_LINT LINT
ROTATE_A_USINT USINT
ROTATE_A_UINT UINT
ROTATE_A_UDINT UDINT
ROTATE_A_ULINT ULINT
ROTATE_A_REAL REAL
ROTATE_A_LREAL LREAL
ROTATE_A_TIME TIME
ROTATE_A_DATE DATE
ROTATE_A_TOD TOD
ROTATE_A_DT DT

It rotates designated elements of an array block in the chosen
direction.

 Error

 ▷ If STRT or END exceed the range of SRC array element, _ERR/_LER flags are set.
 ▷ If an error occurs, there’s no change in SRC and output OUT is the initial value of each variable type

(i.e. INT=0, TIME=T#0S).

 Program example
LD

(1) If input condition (%M2) is on, ROTATE_A_BYTE function is executed.
(2) It rotates designated elements (from 2nd to 8th elements) of SRC_ARY in the chosen direction set by

STRT and END (from index 8 to index 2): refer to the diagram on the opposite page.
(3) The overflowing data (16#44) is written at OUT.

8. Basic Function/Function Block Library

8-162

STRT : 8

END : 2

16#11

16#22

16#33

16#44

16#55

16#66

16#77

16#88

16#99

16#AA

16#11

16#22

16#55

16#66

16#77

16#88

16#99

16#33

16#44

16#AA

44

N = 3

OUT

SRC_ARY SRC_ARY

Before After

8. Basic Function/Function Block Library

8-163

ROTATE_C_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 STRT: starting bit position of SRC bit array to

rotate
 END: ending bit position of SRC bit array to

rotate
 N: bit number to shift

 Output
 ENO: without an error, it will be 1
 OUT: carry output

 In/Out
 SRC: variable for rotation

 Function

 ▷ It rotates a designated bit array of SRC bit arrays in the chosen direction.
 ▷ Setting:
 - Scope: STRT and END set a bit data to rotate.

 - Rotation direction and time: rotates N times in the chosen direction set by STRT and END (STRT END)
- Output: the result is written at ANY_ARY designated by SRC, and the data to rotate from END to STRT is
written at OUT.

Function SRC type Description
ROTATE_C_BYTE BYTE
ROTATE_C_WORD WORD
ROTATE_C_DWORD DWORD
ROTATE_C_LWORD LWORD

It rotates a designated bit array of SRC bit arrays N times in the
chosen direction.

 Error

 ▷ If STRT or END exceed the bit number of SRC variable type, _ERR and _LER flags are set.
 ▷ There’s no change in SRC data.

STRT:0

B1 B0 B3 B2 B5 B4 B7 B6 B9 B8 B11 B10 B13 B12 B15 B14

B1 B0 B3 B2 B5 B4 B7 B6 B9 B8 B11 B10 B13 B12 B15 B14

END:12

N=1

OUT

Before

After

BOOL

ROTATE_C_***ROTATE_C_***ROTATE_C_***ROTATE_C_***

ENO EN
SRC OUT

BOOL BOOL

STRT
END

UINT
UINT

N UINT

ANY_BIT

Rotates a designated bit array of SRC bit arrays

8. Basic Function/Function Block Library

8-164

 Program example

LD

(1) If the transition condition (%M2) is on, ROTATE_C_WORD function is executed.
(2) It rotates the designated bit array, from STRT (13) to END (3), of SRC (16#A5A5) 2 times in the chosen
direction set by STRT and END (from STRT to END): refer to the diagram as below.
(3) The result data after rotation is written at SRC (16#896D), and the overflowing bit (0) is written at OUT.

0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

STRT: 13

N=2

0

END: 3

OUT

Before

After

8. Basic Function/Function Block Library

8-165

RTC_SET
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input

REQ: executes the function with rising pulse input
 DATA: TIME data to input

 Output

DONE: without an error, it will be 1
 STAT: If an error occurs, an error code is written

 Function
▷ It writes RTC data to Clock Device with a rising pulse input.

Variable Content Example Variable Content Example
DATA[0] Last 2-digit number of years 16#01 DATA[4] Minutes 16#30
DATA[1] Months 16#03 DATA[5] Seconds 16#45
DATA[2] Dates 16#15 DATA[6] Days 16#03
DATA[3] Hours 16#18 DATA[7] First 2-digit number of years 16#20

 * The above example is “2001-03-15 18:30:45, Thursday”.
 * Days are indicated as follows: Mon (0), Tue (1), Wed (2), Thu (3), Fri (4), Sat (5), Sun (6).
▷ The above DATA variables are declared as array Byte variables and set as BCD data.

 Error

If CPU does not support RTC function or RTC data is out of range, the output is 0 and the error code is
written at STAT.

Error code Description
00 No error
01 No RTC module installed.

* GM6: GM6-CPUB and GM6-CPUC support RTC.
* GM7: G7E-RTCA should be installed.

02 Wrong RTC data. Example: 14 (Months) 32 (Dates) 25 (Hours)
* Modify RTC data.

 Program example

 Its RTC data is 1999-01-17 11:53:24, Sunday.

(1) When SET_SW is on, RTC_SET function block renews or modifies the SET_data (RTC data).

BOOL
USINT

RTC_SETRTC_SETRTC_SETRTC_SET

DONE REQ
DATA STAT

BOOL

ANY

Writes Time data

8. Basic Function/Function Block Library

8-166

(2) Variable setting is shown as below.

(3) You can set each TIME data using MOVE function.

8. Basic Function/Function Block Library

8-167

(4) Use the following flags to read RTC data.
 e.g. 1998-12-22 19:37:46, Tuesday

Flag Type Description Data
_RTC_TOD TOD Current time of RTC TOD#19:37:46

_RTC_WEEK
UINT Current day of RTC

*(0: Mon, 1: Tue, 2: Wed, 3: Thu, 4: Fri,
5: Sat, 6: Sun)

1

_RTC_DATE DATE Current date of RTC
(1984-01-01 ~ 2083-12-31) D#1998-12-22

 _RTC_ERR BOOL When RTC data is wrong, it is 1. 0

_RTC_TIME[n]
* n: 0 ~ 7

ARRAY
OF
BYTE

BCD data of current time of RTC
_RTC _TIME[0]: Last 2-digit number of years
_RTC _TIME[1]: Months
_RTC _TIME[2]: Dates
_RTC _TIME[3]: Hours
_RTC _TIME[4]: Minutes
_RTC _TIME[5]: Seconds
_RTC _TIME[6]: Days
_RTC _TIME[7]: First 2-digit number of years
Days (0: Mon, 1: Tue, 2: Wed, 3: Thu, 4: Fri,

5: Sat, 6: Sun)

_RTC _TIME[0]: 16#98
_RTC _TIME[1]: 16#12
_RTC _TIME[2]: 16#22
_RTC _TIME[3]: 16#19
_RTC _TIME[4]: 16#37
_RTC _TIME[5]: 16#46
_RTC _TIME[6]: 16#1
_RTC _TIME[7]: 16#19

8. Basic Function/Function Block Library

8-168

SEG
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input

EN: executes the function in case of 1.
 IN: Input data to covert into 7 segment code

 Output

ENO: without an error, it will be 1.
 OUT: result data converted into 7 segment data

 Function

If EN is 1, it converts BCD or HEX (hexadecimal) of IN into 7 segment display code as below and produces
output OUT. If an input is BCD type, it is available to display a number between 0000 and 9999. And in case
of HEX input, it's available to display a number between 0000 and FFFF on 4-digit 7 segment display.

Display example
1) 4-digit BCD -> 4-digit 7 segment code: use SEG function
2) 4-digit HEX -> 4-digit 7 segment code: use SEG function
3) INT -> 4-digit BCD-type 7 segment code: use INT_TO_BCD function first and SEG function
4) INT -> 4-digit HEX-type 7 segment code: use INT_TO_WORD function first and SEG function
5) When 7 segment display digits are more than 4,
 A) in case of BCD, HEX type, use SEG function, after dividing them into 4 digits.
 B) INT -> 8-digit BCD-type 7 segment code:
 Divide INT by 10,000 and convert ‘quotient’ and ‘remainder’ into upper/lower 4-digit 7 segment code

using INT_TO_BCD and SEG function.

 Program example
 LD IL

 LD %M0
 JMPN BBB
 LD BCD_DATA
 SEG
 ST SEG_PATTERN
 BBB:

DWORD

SEGSEGSEGSEG

ENO EN
IN OUT

BOOL BOOL
WORD

Converts BCD or HEX into 7 segment display code

8. Basic Function/Function Block Library

8-169

(1) If the transition condition (%M0)이 On하면 SEGfunction is executed.
(2) If input variable BCD_DATA (WORD) = 16#1234,
the output is ‘2#00000110_01011011_01001111_01100110’ which is displayed as a 7 segment code (1234)
and written at SEG_PATTERN (DWORD).

 Input (IN1): BCD_DATA (WORD) = 16#1234

 (SEG)
Output (OUT): SEG_PATTERN (DWORD) = upper

 16#065B4F66 lower

7 segment configuration

Conversion table for 7 segment code

Input
(BCD)

Input
(HEX) INT Output

B7 B6 B5 B4 B3 B2 B1 B0
Display

Data
0 0 0 0 0 1 1 1 1 1 1 0
1 1 1 0 0 0 0 0 1 1 0 1
2 2 2 0 1 0 1 1 0 1 1 2
3 3 3 0 1 0 0 1 1 1 1 3
4 4 4 0 1 1 0 0 1 1 0 4
5 5 5 0 1 1 0 1 1 0 1 5
6 6 6 0 1 1 1 1 1 0 1 6
7 7 7 0 0 1 0 0 1 1 1 7
8 8 8 0 1 1 1 1 1 1 1 8
9 9 9 0 1 1 0 1 1 1 1 9
 A 10 0 1 1 1 0 1 1 1 A
 B 11 0 1 1 1 1 1 0 0 B
 C 12 0 0 1 1 1 0 0 1 C
 D 13 0 1 0 1 1 1 1 0 D
 E 14 0 1 1 1 1 0 0 1 E
 F 15 0 1 1 1 0 0 0 1 F

B0

B1

B2
B3

B4

B5

B6

0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 1

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0

8. Basic Function/Function Block Library

8-170

SHIFT_A_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: Input data to empty element after shifting
 N: number to shift
 STRT: starting position to shift in an array block

END: ending position to shift in an array block

 Output
 ENO: without an error, it will be 1
 OUT: overflowing data

 In/Out
 SRC: array block to shift

 Function

 ▷ It shifts designated elements of an array block in the chosen direction.

 ▷ Setting

 - Scope: STRT and END set a data array to rotate.

 - Shifting direction and time: rotates N times in the chosen direction set by STRT and END (STRT END)

 - Input data setting: fills an empty element after shifting with input data (IN).

- Output: the result is written at ANY_ARY designated by SRC, and the overflowing data by shifting from
END to STRT is written at OUT.

STRT : 1

END : 7

ARRAY(0)

ARRAY(1)

ARRAY(2)

ARRAY(3)

ARRAY(4)

ARRAY(5)

ARRAY(6)

ARRAY(7)

ARRAY(8)

ARRAY(9)

ARRAY(0)

ARRAY(1)

ARRAY(2)

ARRAY(3)

ARRAY(4)

ARRAY(5)

ARRAY(6)

ARRAY(7)

ARRAY(8)

ARRAY(9)

IN

OUT

N = 2

SRC SRC

After Before

ANY

SHIFT_A_***SHIFT_A_***SHIFT_A_***SHIFT_A_***

ENO EN

SRC
OUT

BOOL BOOL

STRT
END

UINT
UINT

N UINT

ANY_ARY
IN ANY

Shifts array elements

8. Basic Function/Function Block Library

8-171

Function In/Out Array Type Description

SHIFT_A_BOOL BOOL
SHIFT_A_BYTE BYTE
SHIFT_A_WORD WORD
SHIFT_A_DWORD DWORD
SHIFT_A_LWORD LWORD
SHIFT_A_SINT SINT
SHIFT_A_INT INT
SHIFT_A_DINT DINT
SHIFT_A_LINT LINT
SHIFT_A_USINT USINT
SHIFT_A_UINT UINT
SHIFT_A_UDINT UDINT
SHIFT_A_ULINT ULINT
SHIFT_A_REAL REAL
SHIFT_A_LREAL LREAL
SHIFT_A_TIME TIME
SHIFT_A_DATE DATE
SHIFT_A_TOD TOD
SHIFT_A_DT DT

It shifts designated elements of an array block in the chosen
direction.

 Error

 ▷ If STRT or END exceed the range of SRC array element, _ERR and _LER flags are set.
 ▷ If an error occurs, there’s no change in SRC and output OUT is the initial value of each variable type

(i.e. INT=0, TIME=T#0S).

 Program example
LD

(1) If the input condition (%M2) is on, SHIFT_A_INT function is executed.
(2) It shifts designated elements (from 2nd to 8th elements) of SRC_ARY.
(3) It shifts three times the designated elements.
(4) The empty elements after shifting, from array index 2 to array index 3, are filled with input ‘555’.
(5) The overflowing data (1234), carry output, is written at OUT.

8. Basic Function/Function Block Library

8-172

STRT : 2

END : 8

000

111

222

333

444

555

1234

777

888

999

000

111

555

555

555

222

333

444

555

999

555

1234

N = 3

IN

OUT

SRC_ARY SRC_ARY

Before After

8. Basic Function/Function Block Library

8-173

SHIFT_C_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 CYI: Carry Input
 STRT: starting bit position of SRC bit array to shift
 END: ending bit position of SRC bit array to shift
 N: bit number to shift

 Output
 ENO: without an error, it will be 1
 OUT: carry output

 In/Out
 SRC: variable for shifting

 Function

 ▷ It shifts a designated bit array of SRC bit arrays N times in the chosen direction.
 ▷ Setting:
 - Scope: STRT and END set a bit data to shift.
 - Shifting direction and time: shifts N times from STRT to END.

- Input data setting: fills empty bit after shifting with input data (CYI).
- Output: the result is written at ANY_BIT designated by SRC, and the overflowing bit data by shifting from
END to STRT is written at OUT.

Function SRC type Description
SHIFT_C_BYTE BYTE
SHIFT_C_WORD WORD
SHIFT_C_DWORD DWORD
SHIFT_C_LWORD LWORD

It shifts a designated bit array of SRC bit arrays N times.

ANY

SHIFT_C_***SHIFT_C_***SHIFT_C_***SHIFT_C_***

ENO EN

SRC
OUT

BOOL BOOL

STRT
END

UINT
UINT

N UINT

ANY_BIT
CY1 BOOL

Shift with Carry

8. Basic Function/Function Block Library

8-174

 Error

 ▷ If STRT or END exceed the bit number of SRC variable type, _ERR and _LER flags are set.
 ▷ There’s no change in SRC data.

 Program example
LD

(1) If the transition condition (%M2) is on, SHIFT_C_WORD function is executed.
(2) 16#A5A5 is shifted from STRT to END by 2 bits and the empty bits after shifting are filled with 1 (CYI).
(3) SRC after shifting is 16#969D and the overflowing bit data (0) is written at OUT after 2-bit shifting.

0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

END: 13

N=2

CYI

0

STRT: 3

After

Before

8. Basic Function/Function Block Library

8-175

SWAP_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: Input

 Output
 ENO: without an error, it will be 1.
 OUT: swapped data

 Function

It swaps upper data for lower data.

Function Input type Description
SWAP_BYTE BYTE Swaps upper nibble for lower nibble data.
SWAP_WORD WORD Swaps upper byte for lower byte data.
SWAP_DWORD DWORD Swaps upper word for lower word data.
SWAP_LWORD LWORD Swaps upper double word for lower double word data.

 Program example

LD

(1) If the transition condition (%M0) is on, SWAP_BYTE function is executed.
(2) If INPUT (BYTE) = 16#5F, RESULT (BYTE) = 16#F5.

BOOL
ANY_BIT

SWAPSWAPSWAPSWAP

ENO EN
IN OUT

BOOL

ANY_BIT

Swaps upper data for lower data

8. Basic Function/Function Block Library

8-176

UNI_***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: input data array
 SEG: bit-number-designate array to unite data

 Output
 ENO: without an error, it will be 1
 OUT: united data

 Function

 It unites an input data array from the lower bit to a designated bit set by SEG and produces an output.

Function Input type Output type Description
UNI_BYTE BYTE BYTE
UNI_WORD WORD WORD
UNI_DWORD DWORD DWORD
UNI_LWORD LWORD LWORD

It cuts an input array into bit data set by SET and produces an
output (united data) with the same array type of input.

 ▷ If the sum of value set by SEG exceeds the bit number of input data type, _ERR and _LER flags are set.
▷ If the number of arrays of IN and SEG is different, output OUT is 0 and _ERR and _LER flags are set.

UNI_***UNI_***UNI_***UNI_***

ENO EN
IN
SEG

OUT

BOOL BOOL

INT_ARY
ANY_BIT_ARY ANY_BIT

Unites data

8. Basic Function/Function Block Library

8-177

 Program example
LD

(1) If the transition condition (%M0) is on, UNI_WORD function is executed.
(2) If input IN_ARY and SEG_ARY are as below,

output RESULT = 2#00 1010111 0110 101 = 16#2BB5.

7

2

3

4

C 5 D 7

D 6 E 8

A 3 B 5

B 4 C 6

SEG_ARY[3] IN_ARY[3]

IN_ARY[0]

IN_ARY[1]

IN_ARY[2]

SEG_ARY[1]

SEG_ARY[2]

SEG_ARY[0]

8. Basic Function/Function Block Library

 8-178

WORD_BYTE
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 IN: WORD Input

 Output
 ENO: without an error, it will be 1.
 OUT: dummy output

 In/Output
 LOW: lower BYTE output
 HIGH: upper BYTE output

 Function

 ▷ It divides one word data into two byte data.
 LOW: lower byte output, HIGH: upper byte output

 Program example
LD

(1) If the transition condition (%M3) is on, WORD_BYTE function is executed.
(2) If input variable INPUT is 16#ABCD, then BYTE_OUT1 = 16#CD and BYTE_OUT2 = 16#AB.

BOOL

WORD_BYTEWORD_BYTEWORD_BYTEWORD_BYTE
ENO EN

IN OUT

BOOL BOOL
WORD

L0W
HIGH

BYTE

BYTE

Divides WORD into two bytes

8. Basic Function/Function Block Library

8-179

WORD_DWORD
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 LOW: lower WORD input
 HIGH: upper WORD input

 Output
 ENO: without an error, it will be 1.
 OUT: DWORD output

 Function
It combines two WORD data into one DWORD.

 LOW: lower WORD input, HIGH: upper WORD input

 Program example
LD

(1) If the transition condition (%IX1.1.5) is on, WORD_DWORD function is executed.
(2) If input variable INPUT1 = 16#10203040 and INPUT2 = 16#A0B0C0D0,

output variable RESULT = 16#A0B0C0D010203040.

WORD_DWORDWORD_DWORDWORD_DWORDWORD_DWORD

ENO EN
LOW
HIGH

OUT

BOOL BOOL

WORD

WORD DWORD

Combines two WORD data into DWORD

8. Basic Function/Function Block Library

 8-180

XCHG_ ***
 Model GMR GM1 GM2 GM3 GM4 GM6 GM7

Application ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Function Description

 Input
 EN: executes the function in case of 1.
 Output
 ENO: Without an error, it will be 1.
 OUT: Dummy Output
 In/Out
 IN1: In/Output 1
 IN2: In/Output 2

 Function

Exchanges input1 data with input2 data.

 Function In/Out type Description

XCHG_BOOL BOOL Exchanges two BOOL input data.

XCHG_BYTE BYTE Exchanges two BYTE input data.

XCHG_WORD WORD Exchanges two WORD input data.

XCHG_DWORD DWORD Exchanges two DWORD input data.

XCHG_LWORD LWORD Exchanges two LWORD input data.

XCHG_SINT SINT Exchanges two SINT input data.

XCHG_INT INT Exchanges two INT input

XCHG_DINT DINT Exchanges two DINT input data.

XCHG_LINT LINT Exchanges two LINT input data.

XCHG_USINT USINT Exchanges two USINT input data.

XCHG_UINT UINT Exchanges two UINT input data.

XCHG_UDINT UDINT Exchanges two UDINT input data.

XCHG_ULINT ULINT Exchanges two ULINT input data.

XCHG_REAL REAL Exchanges two REAL input data.

XCHG_LREAL LREAL Exchanges two LREAL input data.

XCHG_TIME TIME Exchanges two TIME input data.

XCHG_DATE DATE Exchanges two DATE input data.

XCHG_TOD TOD Exchanges two TOD input data.

XCHG_DT DT Exchanges two DT input data.

XCHG_STRING STRING Exchanges two STRING input data.

XCHGXCHGXCHGXCHG

ENO EN
IN1
IN2

OUT

BOOL BOOL

ANY

ANY BOOL

Exchanges two input data

8. Basic Function/Function Block Library

8-181

 Program example

LD

(1) If the transition condition (%M0) is on, XCHG_BOOL function is executed.

(2) If INPUT1 = 0 and INPUT2 = 1, it will exchange two input data. After the function execution, INPUT1 = 1

and INPUT2 = 0.

