
 3. Common Elements

 3-1

3. Common Elements
 The elements of GLOFA PLC program (programs, functions, function blocks) can be programmed in

other languages such as IL, LD, SFC, etc., respectively. Those languages, however, have grammar

elements in common.

3.1. Expression

3.1.1. Identifiers
▷ Alphabet and all letters starting with underline (_), and all the mixed letters with numbers and

underlines can be identifiers.

▷ Identifiers are used as variable names.

▷ Blank (space) is not allowed in identifiers.

▷ In case of variables, identifiers are generally 16 letters of the alphabet while input/output variable

and instance, 8 letters of the alphabet.

▷ There’s no difference between small letters and capitals in alphabet; all the letters of the alphabet

are recognized as capitals.

Types Examples

Capital letters and numbers IW210, IW215Z, QX75, IDENT

Capital letters, numbers and underline LIM_SW_2, LIMSW5, ABCD, AB_CD

Capital letters and numbers starting with the

underline (_)

_MAIN, _12V7, _ABCD

3.1.2. Data Expression
 The data in GLOFA PLC is: numbers, a string of characters, time letters, etc.

Types Examples

Integer -12, 0, 123_456, +986

Real number -12.0, 0.0, 0.456, 3.14159_26

Real number with an exponent -1.34E-12, 1.0E+6, 1.234E6

Binary number 2#1111_1111, 2#1110_0000

Octal number 8#377 (decimal 255)

8#340 (decimal 224)

Hexadecimal number 16#FF (decimal 255)

16#E0 (decimal 224)

BOOL data 0, 1, TRUE, FALSE

3. Common Elements

 3-2

3.1.2.1. Numbers
▷ There are integer and real numbers.

▷ Discontinuous underline (_) can be placed between numbers and it doesn’t have any meaning.

▷ Decimal complies with general decimal literal expression and if there is a decimal point, this will be

real numbers.

▷ In case of expressing exponent, plus/minus signs can be used. The letter ‘E’ standing for the

exponent does not distinguish capitals from small letters.

▷ When using real numbers with exponents, the followings are not allowed.

 Ex) 12E-5 (×) 12.0E-5 (○)

▷ Integer includes binary, octal, hexadecimal numbers, not to mention decimal, which can be

distinguished by placing # in front of each number.

▷ 0 ~ 9 and A ~ F are used (including small letters a ~ f) in expressing hexadecimal.

▷ Not available to have plus/minus signs in expressing hexadecimal.

▷ Boolean data may be expressed as an integer 0 or 1.

3.1.2.2. Character String
▷ Character string covers all the letters surrounded with single inverted commas.

▷ The length is limited up to 16 letters in case of character string constant and for an initialization

case it does within 30 letters.

Ex)

‘CONVEYER’

3.1.2.3. Time Letters
▷ Time letters are classified into these: 1) Duration data which is calculating and controlling the

elapsed time of a controlling event; 2) Time of Day and Date data which is displaying the time of the

starting/ending point of a controlling event.

3.1.2.3.1. Duration
▷ Duration data starts with the reserved word, 'T#' or 't#'.

▷ Several data types such as date (d), hour (h), minute (m), second (s) and millisecond (ms) should

be written in order and duration date can start with any unit among them. Millisecond (ms), the

minimum unit can be omitted but don’t skip the medium unit between duration units.

▷ Not allowed to use the underline (_).

▷ Duration data can overflow at the maximum unit, if any, and the data with a decimal point is

available except ‘ms’. It does not exceed T#49d17h2m47s295ms (32bits by ‘ms’ unit).

▷ The data is limited to the third decimal place in the second unit (s).

▷ Decimal point is not available at ‘ms’ unit.

 3. Common Elements

 3-3

▷ Capital and small letters are both available.

Content Examples

Duration (no underline) T#14ms, T#14.7s, T#14.7m, T#14.7h

t#14.7d, t#25h15m, t#5d14h12m18s356ms

3.1.2.3.2. Time of Day and Date
▷ There are three types expressing ‘Time of Day and Date’ as follows: Date; Time of Day; Date and

Time.

Content Prefix as a reserved word

Date prefix D#

Time of Day prefix TOD#

Date and Time prefix DT#

▷ The starting point of date is January 1st, 1984.

▷ There's a limit on 'Time of Day’ and ‘Date and Time', which is up to the third decimal place in the

‘ms’ unit.

▷ The overflow is not allowed for all the units when expressing ‘Time of Day’ and ‘Date and Time’.

Content Examples

Date D#1984-06-25

d#1984-06-25

Time of Day TOD#15:36:55.36

tod#15:36:55.369

Date and Time DT#1984-06-25-15:36:55.36

dt#1984-06-25-15:36:55.369

3. Common Elements

 3-4

3.2 . Data Type
Data has a data type to show its character.

3.2.1. Basic Data Type
 GLOFA PLC supports the following basic data types.

No Reserved Word Data Type Size

(bits)
Range

1 SINT Short Integer 8 -128 ~ 127

2 INT Integer 16 -32768 ~ 32767

3 DINT Double Integer 32 -2147483648 ~ 2147483647

4 LINT Long Integer 64 -263 ~ 263-1

5 USINT Unsigned Short Integer 8 0 ~ 255

6 UINT Unsigned Integer 16 0 ~ 65535

7 UDINT Unsigned Double Integer 32 0 ~ 4294967295

8 ULINT Unsigned Long Integer 64 0 ~ 264-1

9 REAL Real Numbers 32 -3.402823E38 ~ -1.401298E-45

1.401298E-45 ~ 3.402823E38

10 LREAL Long Real Numbers 64 -1.7976931E308 ~-4.9406564E-324

4.9406564E-324 ~ 1.7976931E308

11 TIME Duration 32 T#0S ~ T#49D17H2M47S295MS

12 DATE Date 16 D#1984-01-01 ~ D#2163-6-6

13 TIME_OF_DAY Time of Day 32 TOD#00:00:00 ~ TOD#23:59:59.999

14 DATE_AND_TI

ME

Date and Time 64 DT#1984-01-01-00:00:00 ~

 DT#2163-12-31-23:59:59.999

15 STRING Character String 30*8 Limited within 30 letters.

16 BOOL Boolean 1 0, 1

17 BYTE Bit String of Length 8 8 16#0 ~ 16#FF

18 WORD Bit String of Length 16 16 16#0 ~ 16#FFFF

19 DWORD Bit String of Length 32 32 16#0 ~ 16#FFFFFFFF

20 LWORD Bit String of Length 64 64 16#0 ~ 16#FFFFFFFFFFFFFFFF

 ※ LINT, ULINT, REAL, LREAL, LWORD are available in GM1 and GM2 only.

 3. Common Elements

 3-5

3.2.2. Data Type Hierarchy Chart
 Data types used in GLOFA PLC are as follows:

 ANY

 ANY_NUM ANY_BIT ANY STRING ANY_DATE TIME

 LWORD (GM1,2) ATE_AND_TIME

ANY_REAL ANY_INT DWORD DATE

(GM1,2) LINT (GM1,2) WORD TIME_OF_DAY

LREAL DINT BYTE

REAL INT BOOL

 SINT

 ULINT (GM1,2)

 UDINT

 UINT

 USINT

▷ LINT, ULINT, LWORD and ANY_REAL (LREAL, REAL) are available in GM1 and GM2 only.

▷ Data expressed as ANY_NUM includes LREAL, REAL, LINT, DINT, INT, SINT, ULINT, UDINT,

UINT, USINT hereafter.

▷ For example, if a data type is expressed as ANY_BIT in GM3, it can use one of the following data

types: DWORD, WORD, BYTE and BOOL.

3.2.3. Initial Value
 If an initial value of data were not assigned, it would be automatically assigned as below.

Data Type Initial Value

SINT, INT, DINT, LINT 0

USINT, UINT, UDINT, ULINT 0

BOOL, BYTE, WORD, DWORD, LWORD 0

REAL, LREAL 0.0

TIME T#0s

DATE D#1984-01-01

TIME_OF_DAY TOD#00:00:00

DATE_AND_TIME DT#1984-01-01-00:00:00

STRING ' ' (empty string)

3. Common Elements

 3-6

3.2.4. Data Type Structure

Bit String

BOOL 1 bit, range: 0, 1

 7 0

BYTE 8 bits, range: 2#0000_0000 ~ 2#1111_1111, 16#00 ~ 16#FF

 15 8 7 0

WORD 16 bits, range: 2#0000_0000 _0000_0000 ~ 2#1111_1111_1111_1111

 16#0000 ~ 16#FFFF

 31 16 15 0

DWORD 32 bits, range: 2#0000_...000 ~ 2#1111_...111

 16#00000000 ~ 16#FFFFFFFF

 63 32 31 0

LWORD

 64 bits, range: 2#0000_...000 ~ 2#1111_...111, 16#0000000000000000 ~ 16#FFFFFFFFFFFFFFFF

Unsigned Integer

 7 0

USINT 8 bits, range: 0 ~ 255

 15 8 7 0

UINT 16 bits, range: 0 ~ 65,535

 31 16 15 0

UDINT 32 bits, range: 0 ~ 4,294,967,295

 63 32 31 0

ULINT

 64 bits, range: 0 ~ 264-1

Integer (Negative number is expressed as 2's Complement.)

 7 0

SINT 8 bits, range: -128 ~ 127

 15 8 7 0

INT 16 bits, range: -32,768 ~ 32,767

 31 16 15 0

DINT 32 bits, range: -2,147,483,648 ~ 2,147,483,647

 63 32 31 0

LINT

 64 bits, range: -263 ~ 263-1

 3. Common Elements

 3-7

Real (based on the IEEE Standard 754-1984)

 31 30 23 22 0
REAL S Exponent Fraction 32 bits, range: ±1.401298E-45 ~ ±3.402823E38

LREAL S Exponent Fraction

 63 62 52 51 0
64 bits, range: ±4.9406564E-324 ~ ±1.7976931E308

 - S: sign (If it’s 0, the data is a positive number; otherwise, a negative number).

 - Exponent: exponent of 2 (2e-127: for REAL, e=b30b29...b23; for LREAL, e=b62b61...b52).

 - Fraction: a decimal fraction (Fraction: for REAL, f=b22b21...b0; for LREAL, e=b51b52...b0).

Time

 31 0

TIME 32 bits, range: 0 ~ 4,294,967,295ms

 T#49d17h2m47s295ms

Date

 63 48 47 32 31 0

DT 0000000000000000 DATE TOD

 64bits, range: DT#1984-01-01-00:00:00 ~ DT#2163-12-31-23:59:59.999

 15 0

DATE 16bits, range: D#1984-01-01 ~ D#2163-6-6

 31 0

TOD 32bits, range: TOD#00:00:00 ~ TOD#23:59:59.999

#BCD

 7 4 3 0

(BYTE) 101 100 8bits, range: 0 ~ 99

 15 8 7 0

(WORD) 103 102 101 100 16bits, range: 0 ~ 9999

 31 24 23 16 15 8 7 0

(DWORD) 107 106 105 104 103 102 101 100 32bits, range: 0 ~ 99,999,999

 63 48 47 32 31 16 15 0

(LWORD) 1015 1014 1013 1012 1011 1010 109 108 107 106 105 104 103 102 101 100

 64bits, range: 0 ~ 9,999,999,999,999,999

3. Common Elements

 3-8

3.3. Variable
 A variable, data used in the program, has its own value. ‘Variable’ means something that can vary such

as an input/output of PLC, memory, etc.

3.3.1. Variable Expression
▷ Variables can be expressed in two ways: one is to give a name to a data element using an identifier

(Variable by Identifier) and the other is to directly assign a memory address or an input/output of

PLC to a data element (Direct Variable).

▷ A variable by identifier should be unique within its ‘effective scope’ (program area where the

variable was declared) in order to distinguish it from other variables.

▷ A direct variable is expressed as one, which starts with the percent sign (%) followed by the

‘location prefix’, a prefix of the data size, and more than one unsigned integer numbers divided by a

period (.). The prefix are shown as below:

Location prefix

No. Prefix Meaning

1 Ⅰ Input Location

2 Q Output Location

3 M Memory Location

Size prefix

No. Prefix Meaning

1 X 1 bit size

2 None 1 bit size

3 B 1 BYTE (8 bits) size

4 W 1 WORD (16 bits) size

5 D 1 DOUBLE WORD (32 bits) size

6 L 1 LONG WORD (64 bits) size

 Expression format

%[Location Prefix][Size Prefix] n1.n2.n3

No. ⅠⅠⅠⅠ,,,, Q M

n1 Base number (starting from “0”) n1 data according to [size prefix]

(starting from “0”)

n2 Slot number (starting from “0”) n2 bit of n1 data (starting from “0”):

available to omit

n3 n3 data according to the [size prefix]

(starting from “0”)

Not used.

 3. Common Elements

 3-9

Examples

%QX3.1.4 or %Q3.1.4 4th output of no.1 slot on no.3 base (1bit)

%ⅠⅠⅠⅠW2.4.1 1st word input of no.4 slot on no.2 base (16bits)

%MD48 48th double word memory

%MW40.3 3rd bit of 40th word memory

 (Internal memory doesn’t have a base or slot number.)

▷ Small letter is not allowed as a prefix.

▷ A variable without a size prefix is treated as 1 bit.

▷ Direct variables are available to use without a variable declaration.

3.3.2. Variable Declaration
▷ Program elements (programs, functions, function blocks, etc) have declaration parts to edit their

variables to use.

▷ Users should declare variables first to use them in the program elements.

▷ The contents of a variable declaration are as follows:

 1) Variable types: how to declare variables?

Variable types Description

VAR General variable available to read/write

VAR_RETAIN Retaining (data-keeping) variable

VAR_CONSTANT Read Only Variable

VAR_EXTERNAL Declaration to use the variable declared as VAR_GLOBAL

Reference

When declaring Resource Global Variable and Configuration Global Variable, variable formats are

VAR_GLOBAL, VAR_GLOBAL_RETAIN, and VAR_GLOBAL_CONSTANT; VAR_EXTERNAL is not

available for them.

 2) Data type: sets a variable data type.

 3) Memory allocation: assigns memory for a variable.

 Auto: the compiler sets a variable location automatically (Automatic Allocation Variable).

 Assign (AT): a user sets a variable location, using a direct variable (Direct Variable).

3. Common Elements

 3-10

Reference

 The location of Automatic Allocation Variable is not fixed. If variable VAL1, for example, was

declared as BOOL, it is not fixed in the internal memory; the compiler and linker fix its location. If the

program is compiled again after modification, the location may change.

The merit of Automatic Allocation Variable is that users don’t have to care the location of the internal

variables because its location is not overlapped as long as a variable name is different from others.

 It is recommended not to use Direct Variable except %ⅠⅠⅠⅠand %Q because the location of a variable

is fixed and it could be overlapped in a wrong-used case.

▷ Initial Value Assignment: assigns an initial value. A variable is set with an initial value as is shown in

‘3.2.3. Initial Value’ if not assigned.

Reference

The initial value is not assigned when it comes to VAR_EXTERNAL.

In case of ‘Variable Declaration’, you cannot assign an initial value to %ⅠⅠⅠⅠor %Q variables.

▷ You can declare variable VAR_RETAIN that keeps its data in case of power failure. Rules are:

 1) ‘Retention Variable’ retains its data when the system is set as ‘Warm Restart’.

 2) In case of ‘Cold Restart’, variables are initialized as the initial values set by users or the basic initial

values as are shown in ‘3.2.3 Initial Value’.

▷ Variables, which are not declared as VAR_RETAIN, are to be initialized as the initial values set by a

user or the basic initial values in case of Warm or Cold Restart’.

Reference

Variables, which are assigned as %I or %Q, are not to be declared as VAR_RETAIN or

VAR_CONSTANT.

▷ Users can declare variables 'Array' with Elementary Data Type. When declaring the Array Variable,

users are supposed to set Data Type and Array Size; ‘String’ among Elementary Data Type is not

allowed.

▷ Effective scope of variable declaration, the area which is available to use the variable, is limited to

the program where variables are declared. And users can't use variables declared in other program

in the above area. On the contrary, users can get an access to 'Global Variable' from other program

elements by declaring it as 'VAR_EXTERNAL': 'Configuration Global Variable' can be used in all

program elements of all resources; 'Resource Global Variable' can be used in all program elements

of the very resource.

 3. Common Elements

 3-11

Examples of Variable Declaration

Variable Name Variable Kind Data Type Initial Value Memory Allocation

I_VAL VAR INT 1234 Auto

BIPOLAR VAR_RETAIN REAL Auto

LIMIT_SW VAR BOOL %IX1.0.2

GLO_SW VAR_EXTERNAL DWORD Auto

READ_BUF VAR ARRAY OF INT[10] Auto

3. Common Elements

 3-12

3.3.3. Reserved Variable
▷ ‘Reserved Variable’ is the variables previously declared in the system. These variables are used for

special purposes and users cannot declare other variables with the Reserved Variable names.

▷ Users can use these reserved variables without variable declaration.

▷ For further information, please refer to ‘User’s Manual’.

 1) User Flag

Reserved Variable Data Type Description

_ERR BOOL Operation error contact

_LER BOOL Operation error latch contact

_T20MS BOOL 20ms clock contact

_T100MS BOOL 100ms clock contact

_T200MS BOOL 200ms clock contact

_T1S BOOL 1 sec. clock contact

_T2S BOOL 2 sec. clock contact

_T10S BOOL 10 sec. clock contact

_T20S BOOL 20 sec. clock contact

_T60S BOOL 60 sec. clock contact

_ON BOOL All time ON contact

_OFF BOOL All time OFF contact

_1ON BOOL 1 scan ON contact

_1OFF BOOL 1 scan OFF contact

_STOG BOOL Reversal at every scanning

_INIT_DONE BOOL Initial program completion

_RTC_DATE DATE Current date of RTC

_RTC_TOD TOD Current time of RTC

_RTC_WEEK UINT Current day of RTC

 3. Common Elements

 3-13

 2) System Error Flag

Reserved Variable Data Type Description

_CNF_ER WORD System error (Heavy trouble)

_CPU_ER BOOL CPU configuration error

_IO_TYER BOOL Module type inconsistency error

_IO_DEER BOOL Module installation error

_FUSE_ER BOOL Fuse shortage error

_IO_RWER BOOL I/O module read/write error (trouble)

_SP_IFER BOOL Special/communication module interface error (trouble)

_ANNUN_ER BOOL Heavy trouble detection error of external device

_WD_ER BOOL Scan Watch-Dog error

_CODE_ER BOOL Program code error

_STACK_ER BOOL Stack Overflow error

_P_BCK_ER BOOL Program error

3) System Error Release Flag

Reserved Variable Data Type Description

_CNF_ER_M BYTE System error (heavy trouble) release

 4) System Alarm Flag

Reserved variable Data type Description

_CNF_WAR WORD System Alarm (Alarm message)

_RTC_ERR BOOL RTC data error

_D_BCK_ER BOOL Data backup error

_H_BCK_ER BOOL Hot restart unable error

_AB_SD_ER BOOL Abnormal Shutdown

_TASK_ERR BOOL Task conflict (normal cycle, external task)

_BAT_ERR BOOL Battery error

_ANNUN_WR BOOL Light trouble detection of external device

_HSPMT1_ER BOOL Over high-speed link parameter 1

_HSPMT2_ER BOOL Over high-speed link parameter 2

_HSPMT3_ER BOOL Over high-speed link parameter 3

_HSPMT4_ER BOOL Over high-speed link parameter 4

3. Common Elements

 3-14

5) Detailed System Error Flag

Reserved variable Data type Description

_IO_TYER_N UINT Module type inconsistency slot number

_IO_TYERR ARRAY OF BYTE Module type inconsistency location

_IO_DEER_N UINT Module installation slot number

_IO_DEERR ARRAY OF BYTE Module installation location

_FUSE_ER_N UINT Fuse shortage slot number

_FUSE_ERR ARRAY OF BYTE Fuse shortage slot location

_IO_RWER_N UINT I/O module read/write error slot number

_IO_RWERR ARRAY OF BYTE I/O module read/write error slot location

_ANC_ERR ARRAY OF UINT Heavy trouble detection of external device

_ANC_WAR ARRAY OF UINT Light trouble detection of external device

_ANC_WB ARRAY OF BOOL Alarm message detection bit map of external device

_TC_BMAP ARRAY OF BOOL Task conflict mark

_TC_CNT ARRAY OF UINT Task conflict counter

_BAT_ER_TM DT Battery voltage drop-down time

_AC_F_CNT UINT Shutdown counter

_AC_F_TM ARRAY OF DT Instantaneous service interruption history

 3. Common Elements

 3-15

 6) Information of System Operation Status

Reserved variable Data type Description

_CPU_TYPE UINT System Type
_VER_NUM UINT PLC O/S Version number

_MEM_TYPE UINT Memory module type

_SYS_STATE WORD PLC mode and status

_RST_TY BYTE Restart mode information

_INIT_RUN BIT Initializing

_SCAN_MAX UINT Max. scan time (ms)

_SCAN_MIN UINT Min. scan time (ms)

_SCAN_CUR UINT Current scan time (ms)

_STSK_NUM UINT Task number requiring execution time check

_STSK_MAX UINT Max. task execution time (ms)

_STSK_MIN UINT Min. task execution time (ms)

_STSK_CUR UINT Current task execution time (ms)

_RTC_TIME ARRAY OF BYTE Current time

_SYS_ERR UINT Error type

 7) Communication Module Information Flag [n is a slot number where a communication module is

installed (n = 0 ~ 7)]

Reserved variable Data type Description

_CnVERNO UINT Communication module version number

_CnTXECNT UINT Communication transmit error

_CnRXECNT UINT Communication receive error

_CnSVCFCNT UINT Communication service process error

_CnSCANMX UINT Max. communication scan time (1ms unit)

_CnSCANAV UINT Average communication scan time (1ms unit)

_CnSCANMN UINT Minimum communication scan time (1ms unit)

_CnLINF UINT Communication module system information

_CnCRDER BOOL Communication module system error (Error = 1)

_CnSVBSY BOOL Lack of common RAM resource (Lack = 1)

_CnIFERR BOOL Interface error (error = 1)

_CnINRING BOOL Communication in ring (IN_RING = 1)

3. Common Elements

 3-16

 8) Remote I/O Control Flag [m is a slot number where a communication module is installed (m = 0 ~ 7)]

Reserved variable Data type Description

_FSMm_RESET BOOL (able to write) Remote Ⅰ/O station reset control (reset = 1)

_FSMm_IO_RESET BOOL(able to write) Output reset control of remote I/O station (reset = 1)

_FSMm_st_no USINT (able to write) Station number of corresponding remote I/O station

 9) Detailed High-speed Link Information Flag [m is a high-speed link parameter number (m = 1, 2, 3, 4)]

Reserved variable Data type Description

_HSmRLINK BOOL HS RUN_LINK information

_HSmLTRBL BOOL Abnormal information of HS (Link Trouble)

_HSmSTATE ARRAY OF BOOL
General communication status information of k data
block

_HSmMOD ARRAY OF BOOL
Station mode information of k data block at HS link
parameter (Run = 1, Other = 0)

_HSmTRX ARRAY OF BOOL
Communication status information of k data block at HS
link parameter (Normal = 1, Abnormal = 0)

_HSmERR ARRAY OF BOOL
Station status information of k data block at HS link
parameter (Normal = 0, Error = 1)

 3. Common Elements

 3-17

3.4. Reserved Word
Reserved words are previously defined words to use in the system. And these reserved words cannot

be used as an identifier.

Reserved words
ACTION ... END_ACTION
ARRAY ... OF
AT
CASE ... OF ... ELSE ... END_CASE
CONFIGURATION ... END_CONFIGURATION
Name of data type
DATE#, D#
DATE_AND_TIME#, DT#
EXIT
FOR ... TO ... BY ... DO ... END_FOR
FUNCTION ... END_FUNCTION
FUNCTION_BLOCK ... END_FUNCTION_BLOCK
Name of function block
IF ... THEN ... ELSIF ... ELSE ... END_IF
OK
Operator (IL language)
Operator (ST language)
PROGRAM
PROGRAM ... END_PROGRAM
REPEAT ... UNTIL ... END_REPEAT
RESOURCE ... END_RESOURCE
RETAIN
RETURN
STEP ... END_STEP
STRUCTURE ... END_STRUCTURE
T#
TASK ... WITH
TIME_OF_DAY#, TOD#
TRANSITION ... FROM... TO ... END_TRANSITION
TYPE ... END_TYPE
VAR ... END_VAR
VAR_INPUT ... END_VAR
VAR_OUTPUT ... END_VAR
VAR_IN_OUT ... END_VAR
VAR_EXTERNAL ... END_VAR
VAR_ACCESS ... END_VAR
VAR_GLOBAL ... END_VAR
WHILE ... DO ... END_WHILE
WITH

3. Common Elements

 3-18

3.5. Program Type
▷ There are three types of program: function, function block and program.

▷ It is not available to call its own program in the program (reflexive call is prohibited).

3.5.1. Function
▷ A function has one output.

Example

If there is function A that is to add input IN1 and IN2 and then add 100 to the sum of IN1 and IN2. and

the output 1 <= IN1 + IN2 + 100, this function will be correct. However, if the above function has one

more output (output 2 <= IN1 + IN2 * 100), this will not be a function because it has 2 outputs: output 1

and output 2.

▷ A function does not have data to preserve its state inside. This means if an input is constant, an

output value should be constant, which is a function.

Example

If there is function B whose contents are

 Output 1 <= IN1 + IN2 + Val

 Val <= output1 (where, Val is an internal variable),

This cannot be a function as there is internal variable Val. To have an internal variable means that an

output will be different even if there is a same input. Output 1 value is subject to change because of

Val variable even if the value of IN1 and IN2 are constant as is shown on the above. Compared with

the above function A, function A will have output 1 value (150) when IN1 is 20 and IN2 is 30. This

shows that the output value will be constant if inputs are constant.

▷ An internal variable of a function is not available to have an initial value.

▷ Users can’t declare a function as VAR_EXTERNAL and use it.

▷ It is not available to use direct variables inside the function.

▷ A function will be called by program elements and used.

▷ Data transfer from program composition elements, which call the function, to the function will be

executed through an input of a function.

 3. Common Elements

 3-19

Example

SHL function is a basic function that shifts input IN to the left as many as N bit number and produces

it as an output. Program composition elements call SHL function, assigning a value of TEST variable

to input IN and a value of NO variable to input N. The result will be stored in OUTPUT variable.

▷ A function is inserted into a library for use.

▷ It is not available to call a function block or a program inside the function.

▷ A function has a variable whose name is the same as that of the function and whose data type is

the same as the data type of the result of the function. This variable is automatically created when

making a function, and the result value of the function will be written in the output.

Example

If a function name is WEIGH and a data type of a result value is WORD, a variable whose name is

WEIGH and whose data type is WORD will be automatically created inside the function. Users can

store the result of function in variable WEIGH.

ST WEIGH (example in IL)

3.5.2 Function Block
▷ A function block has several outputs.

▷ A function block has data inside. A function block should declare the instance as it declares

variables before using them. Instance is a set of variables used in a function block. A function block

should have its data memory to preserve the output value as well as variables used inside, which is

called as “instance.” A program is a kind of a function block and also needs to declare “instance.”

However, users cannot call a program inside a program or a function block for use, contrary to a

function block.

▷ In order to use the output value of a function block, it is required to place a period (.) between the

name of instance and the output name.

3. Common Elements

 3-20

Example

General examples of a function block are Timer and Counter. On-delay timer function block is TON

and this is executed if IN is ON after users declare T1 as “instance.” In order to use timer output

contact and duration value, it is required to place a period (.) between the name of instance and the

output name. In case of a timer function block, the output contact and the elapsed time value for the

instance are T1.Q and T1.ET respectively because the output contact name is Q and the elapsed

time contact name is ET. The output value of a function is a return value by calling a function while

the output value of a function block is fixed for the instance.

▷ Users cannot declare a direct variable inside a function block. However, users can use a direct

variable declared as Global Variable and allocated according to ‘Assign (AT)’ after declaring it as

VAR_EXTERNAL.

▷ A function block is inserted into a library for use.

▷ It is not available to call a program inside the function block.

3.5.3 Program
▷ Users can use a program after declaring an instance like a function block.

▷ It is available to use direct variables in the program.

▷ A program does not have input/output variables.

The calling of a program is defined in the resource.

T1T1T1T1

TONTONTONTON

QQQQ

PTPTPTPT

ININININ

ETETETET

Instance name

Output

Input

